Convexidade monofônica em classes de grafos
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/16736 |
Resumo: | In this work, we study some parameters of monophonic convexity in some classes of graphs and we present our results about this subject. We prove that decide if the $m$-interval number is at most 2 and decide if the $m$-percolation time is at most 1 are NP-complete problems even on bipartite graphs. We also prove that the $m$-convexity number is as hard to approximate as the maximum clique problem, which is, $O(n^{1-varepsilon})$-unapproachable in polynomial-time, unless P=NP, for each $varepsilon>0$. Finally, we obtain polynomial time algorithms to compute the $m$-convexity number on hereditary graph classes such that the computation of the clique number is polynomial-time solvable (e.g. perfect graphs and planar graphs). |
| id |
UFC-7_1ff57f4b22a33402dba8452bb1a8a5f7 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/16736 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Costa, Eurinardo RodriguesDourado, Mitre CostaSampaio, Rudini Menezes2016-05-12T11:58:17Z2016-05-12T11:58:17Z2016COSTA, Eurinardo Rodrigues. Convexidade Monofônica em classes de grafos. 2016. 54 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016.http://www.repositorio.ufc.br/handle/riufc/16736In this work, we study some parameters of monophonic convexity in some classes of graphs and we present our results about this subject. We prove that decide if the $m$-interval number is at most 2 and decide if the $m$-percolation time is at most 1 are NP-complete problems even on bipartite graphs. We also prove that the $m$-convexity number is as hard to approximate as the maximum clique problem, which is, $O(n^{1-varepsilon})$-unapproachable in polynomial-time, unless P=NP, for each $varepsilon>0$. Finally, we obtain polynomial time algorithms to compute the $m$-convexity number on hereditary graph classes such that the computation of the clique number is polynomial-time solvable (e.g. perfect graphs and planar graphs).Neste trabalho, estudamos alguns parâmetros para a convexidade monofônica em algumas classes de grafos e apresentamos nossos resultados acerca do assunto. Provamos que decidir se o número de $m$-intervalo é no máximo 2 e decidir se o tempo de $m$-percolação é no máximo 1 são problemas NP-completos mesmo em grafos bipartidos. Também provamos que o número de $m$-convexidade é tão difícil de aproximar quanto o problema da Clique Máxima, que é, $O(n^{1-varepsilon})$-inaproximável em tempo polinomial, a menos que P=NP, para cada $varepsilon>0$. Finalmente, apresentamos um algoritmo de tempo polinomial para determinar o número de $m$-convexidade em classes hereditárias de grafos onde a computação do tamanho da clique máxima é em tempo polinomial (como grafos perfeitos e grafos planares).Ciência da computaçãoConvexidade monofônicaGrafos bipartidosNP-completudeNúmero de convexidadeTempo de percolaçãoInaproximabilidadeConvexidade monofônica em classes de grafosMonophonic convexity in classes of graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_dis_ercosta.pdf2016_dis_ercosta.pdfapplication/pdf1611008http://repositorio.ufc.br/bitstream/riufc/16736/1/2016_dis_ercosta.pdf4733a7aa273b8370fc06126fca5dc15aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16736/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/167362020-06-25 14:51:47.198oai:repositorio.ufc.br:riufc/16736w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-06-25T17:51:47Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Convexidade monofônica em classes de grafos |
| dc.title.en.pt_BR.fl_str_mv |
Monophonic convexity in classes of graphs |
| title |
Convexidade monofônica em classes de grafos |
| spellingShingle |
Convexidade monofônica em classes de grafos Costa, Eurinardo Rodrigues Ciência da computação Convexidade monofônica Grafos bipartidos NP-completude Número de convexidade Tempo de percolação Inaproximabilidade |
| title_short |
Convexidade monofônica em classes de grafos |
| title_full |
Convexidade monofônica em classes de grafos |
| title_fullStr |
Convexidade monofônica em classes de grafos |
| title_full_unstemmed |
Convexidade monofônica em classes de grafos |
| title_sort |
Convexidade monofônica em classes de grafos |
| author |
Costa, Eurinardo Rodrigues |
| author_facet |
Costa, Eurinardo Rodrigues |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Dourado, Mitre Costa |
| dc.contributor.author.fl_str_mv |
Costa, Eurinardo Rodrigues |
| dc.contributor.advisor1.fl_str_mv |
Sampaio, Rudini Menezes |
| contributor_str_mv |
Sampaio, Rudini Menezes |
| dc.subject.por.fl_str_mv |
Ciência da computação Convexidade monofônica Grafos bipartidos NP-completude Número de convexidade Tempo de percolação Inaproximabilidade |
| topic |
Ciência da computação Convexidade monofônica Grafos bipartidos NP-completude Número de convexidade Tempo de percolação Inaproximabilidade |
| description |
In this work, we study some parameters of monophonic convexity in some classes of graphs and we present our results about this subject. We prove that decide if the $m$-interval number is at most 2 and decide if the $m$-percolation time is at most 1 are NP-complete problems even on bipartite graphs. We also prove that the $m$-convexity number is as hard to approximate as the maximum clique problem, which is, $O(n^{1-varepsilon})$-unapproachable in polynomial-time, unless P=NP, for each $varepsilon>0$. Finally, we obtain polynomial time algorithms to compute the $m$-convexity number on hereditary graph classes such that the computation of the clique number is polynomial-time solvable (e.g. perfect graphs and planar graphs). |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-05-12T11:58:17Z |
| dc.date.available.fl_str_mv |
2016-05-12T11:58:17Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
COSTA, Eurinardo Rodrigues. Convexidade Monofônica em classes de grafos. 2016. 54 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/16736 |
| identifier_str_mv |
COSTA, Eurinardo Rodrigues. Convexidade Monofônica em classes de grafos. 2016. 54 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2016. |
| url |
http://www.repositorio.ufc.br/handle/riufc/16736 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/16736/1/2016_dis_ercosta.pdf http://repositorio.ufc.br/bitstream/riufc/16736/2/license.txt |
| bitstream.checksum.fl_str_mv |
4733a7aa273b8370fc06126fca5dc15a 8c4401d3d14722a7ca2d07c782a1aab3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793271835721728 |