Sobre convexidade em prismas complementares

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Duarte, Márcio Antônio lattes
Orientador(a): Barbosa, Rommel Melgaço lattes
Banca de defesa: Barbosa, Rommel Melgaço, Yanasse, Horacio Hideki, Oliveira, Carla Silva, Coelho, Erika Morais Martins, Silva, Hebert Coelho da
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000103f
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/4821
Resumo: In this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic.
id UFG-2_7164c0f1f46bff9a9efc82b5873bb145
oai_identifier_str oai:repositorio.bc.ufg.br:tede/4821
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Barbosa, Rommel Melgaço http://lattes.cnpq.br/6228227125338610Szwarcfiter, Jayme L.http://lattes.cnpq.br/2002515486942024Barbosa, Rommel MelgaçoYanasse, Horacio HidekiOliveira, Carla SilvaCoelho, Erika Morais MartinsSilva, Hebert Coelho dahttp://lattes.cnpq.br/9907691146700229Duarte, Márcio Antônio2015-10-29T10:04:41Z2015-04-10DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4821ark:/38995/001300000103fIn this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic.Neste trabalho, apresentamos alguns resultados relacionados, principalmente às propriedades algorítmicas e de complexidade de um produto de grafos chamado prisma complementar. Respondendo algumas questões deixadas em aberto por Haynes, Slater e van der Merwe, mostramos o problema de clique, conjunto independente e conjunto com kdominantes é NP-Completo para prismas complementares em geral. Além disso, mostramos resultados de NP-completude em relação ao cálculo de alguns parâmetros da convexidade P3 para o prisma complementar de grafos em geral, como o número P3, número envoltório P3 e número de Carathéodory. Mostramos que o cálculo do número P3 é NPcompleto para o prisma complementar de grafos em geral. Já para o número envoltório P3, mostramos que o mesmo pode ser calculado de forma eficiente em tempo polinomial. Para o número de Carathéodory, mostramos que é NP-completo para os prismas complementares de grafos bipartidos, mas que para árvores, este pode ser calculado em tempo polinomial e ainda, para classe dos cografos, o cálculo do número de Carathéodory do prisma complementar desses é 3. Encontramos também, uma relação entre a cardinalidade de um conjunto de Carathéodory de um grafo qualquer e um conjunto de Carathéodory do seu prisma complementar. Por fim, estabelecemos um limite superior do cálculo dos parâmetros: número geodésico, número envoltório e número de Carathéodory para operações prisma complementar de grafos caminho, ciclos e completos considerando as convexidades P3 e geodésica.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/22275/Tese%20-%20Marcio%20Antonio%20Duarte%20-%202015.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoria dos grafosConvexidadeNP-completudePrismas complementaresGraph theoryConvexityNP-completeComplementary prismsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSobre convexidade em prismas complementaresResults on convexity complementary prismsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/ccc4c1cb-2c19-407d-9411-74cfe50266a7/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/4cee5bd2-2597-42d8-be8f-327a67bcecaa/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821328http://repositorio.bc.ufg.br/tede/bitstreams/722a0830-542e-4080-9dc8-927f806b1c08/download683d9883b2ad62ac3b8bafc566b2e600MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/a00e3c59-92ab-4ac8-8d78-be157194e4e9/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Marcio Antonio Duarte - 2015.pdfTese - Marcio Antonio Duarte - 2015.pdfapplication/pdf457015http://repositorio.bc.ufg.br/tede/bitstreams/2f875963-aaf6-4b1f-96dd-8b5bb1c8a7be/download1f57686628e44a0cebc1fee7aaf0bcfcMD55TEXTTese - Marcio Antonio Duarte - 2015.pdf.txtTese - Marcio Antonio Duarte - 2015.pdf.txtExtracted Texttext/plain119651http://repositorio.bc.ufg.br/tede/bitstreams/0ba96fc1-6b10-4568-aca0-058013d19677/download9b3accf9ca5f7ce20d1a8976d2cd12d5MD56THUMBNAILTese - Marcio Antonio Duarte - 2015.pdf.jpgTese - Marcio Antonio Duarte - 2015.pdf.jpgGenerated Thumbnailimage/jpeg2296http://repositorio.bc.ufg.br/tede/bitstreams/1a013df8-40a0-463f-bb3a-df3ad8204a7b/downloadc2750cfbab5915ecdbf360b0ded42214MD57tede/48212015-10-30 03:05:00.489http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4821http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342015-10-30T05:05Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Sobre convexidade em prismas complementares
dc.title.alternative.eng.fl_str_mv Results on convexity complementary prisms
title Sobre convexidade em prismas complementares
spellingShingle Sobre convexidade em prismas complementares
Duarte, Márcio Antônio
Teoria dos grafos
Convexidade
NP-completude
Prismas complementares
Graph theory
Convexity
NP-complete
Complementary prisms
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Sobre convexidade em prismas complementares
title_full Sobre convexidade em prismas complementares
title_fullStr Sobre convexidade em prismas complementares
title_full_unstemmed Sobre convexidade em prismas complementares
title_sort Sobre convexidade em prismas complementares
author Duarte, Márcio Antônio
author_facet Duarte, Márcio Antônio
author_role author
dc.contributor.advisor1.fl_str_mv Barbosa, Rommel Melgaço
dc.contributor.advisor1Lattes.fl_str_mv  http://lattes.cnpq.br/6228227125338610
dc.contributor.advisor-co1.fl_str_mv Szwarcfiter, Jayme L.
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2002515486942024
dc.contributor.referee1.fl_str_mv Barbosa, Rommel Melgaço
dc.contributor.referee2.fl_str_mv Yanasse, Horacio Hideki
dc.contributor.referee3.fl_str_mv Oliveira, Carla Silva
dc.contributor.referee4.fl_str_mv Coelho, Erika Morais Martins
dc.contributor.referee5.fl_str_mv Silva, Hebert Coelho da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9907691146700229
dc.contributor.author.fl_str_mv Duarte, Márcio Antônio
contributor_str_mv Barbosa, Rommel Melgaço
Szwarcfiter, Jayme L.
Barbosa, Rommel Melgaço
Yanasse, Horacio Hideki
Oliveira, Carla Silva
Coelho, Erika Morais Martins
Silva, Hebert Coelho da
dc.subject.por.fl_str_mv Teoria dos grafos
Convexidade
NP-completude
Prismas complementares
topic Teoria dos grafos
Convexidade
NP-completude
Prismas complementares
Graph theory
Convexity
NP-complete
Complementary prisms
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Graph theory
Convexity
NP-complete
Complementary prisms
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description In this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-10-29T10:04:41Z
dc.date.issued.fl_str_mv 2015-04-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/4821
dc.identifier.dark.fl_str_mv ark:/38995/001300000103f
identifier_str_mv DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.
ark:/38995/001300000103f
url http://repositorio.bc.ufg.br/tede/handle/tede/4821
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/ccc4c1cb-2c19-407d-9411-74cfe50266a7/download
http://repositorio.bc.ufg.br/tede/bitstreams/4cee5bd2-2597-42d8-be8f-327a67bcecaa/download
http://repositorio.bc.ufg.br/tede/bitstreams/722a0830-542e-4080-9dc8-927f806b1c08/download
http://repositorio.bc.ufg.br/tede/bitstreams/a00e3c59-92ab-4ac8-8d78-be157194e4e9/download
http://repositorio.bc.ufg.br/tede/bitstreams/2f875963-aaf6-4b1f-96dd-8b5bb1c8a7be/download
http://repositorio.bc.ufg.br/tede/bitstreams/0ba96fc1-6b10-4568-aca0-058013d19677/download
http://repositorio.bc.ufg.br/tede/bitstreams/1a013df8-40a0-463f-bb3a-df3ad8204a7b/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
683d9883b2ad62ac3b8bafc566b2e600
9da0b6dfac957114c6a7714714b86306
1f57686628e44a0cebc1fee7aaf0bcfc
9b3accf9ca5f7ce20d1a8976d2cd12d5
c2750cfbab5915ecdbf360b0ded42214
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536605883432960