Sobre convexidade em prismas complementares
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/001300000103f |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/4821 |
Resumo: | In this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic. |
| id |
UFG-2_7164c0f1f46bff9a9efc82b5873bb145 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/4821 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Barbosa, Rommel Melgaço http://lattes.cnpq.br/6228227125338610Szwarcfiter, Jayme L.http://lattes.cnpq.br/2002515486942024Barbosa, Rommel MelgaçoYanasse, Horacio HidekiOliveira, Carla SilvaCoelho, Erika Morais MartinsSilva, Hebert Coelho dahttp://lattes.cnpq.br/9907691146700229Duarte, Márcio Antônio2015-10-29T10:04:41Z2015-04-10DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4821ark:/38995/001300000103fIn this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic.Neste trabalho, apresentamos alguns resultados relacionados, principalmente às propriedades algorítmicas e de complexidade de um produto de grafos chamado prisma complementar. Respondendo algumas questões deixadas em aberto por Haynes, Slater e van der Merwe, mostramos o problema de clique, conjunto independente e conjunto com kdominantes é NP-Completo para prismas complementares em geral. Além disso, mostramos resultados de NP-completude em relação ao cálculo de alguns parâmetros da convexidade P3 para o prisma complementar de grafos em geral, como o número P3, número envoltório P3 e número de Carathéodory. Mostramos que o cálculo do número P3 é NPcompleto para o prisma complementar de grafos em geral. Já para o número envoltório P3, mostramos que o mesmo pode ser calculado de forma eficiente em tempo polinomial. Para o número de Carathéodory, mostramos que é NP-completo para os prismas complementares de grafos bipartidos, mas que para árvores, este pode ser calculado em tempo polinomial e ainda, para classe dos cografos, o cálculo do número de Carathéodory do prisma complementar desses é 3. Encontramos também, uma relação entre a cardinalidade de um conjunto de Carathéodory de um grafo qualquer e um conjunto de Carathéodory do seu prisma complementar. Por fim, estabelecemos um limite superior do cálculo dos parâmetros: número geodésico, número envoltório e número de Carathéodory para operações prisma complementar de grafos caminho, ciclos e completos considerando as convexidades P3 e geodésica.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/22275/Tese%20-%20Marcio%20Antonio%20Duarte%20-%202015.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoria dos grafosConvexidadeNP-completudePrismas complementaresGraph theoryConvexityNP-completeComplementary prismsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSobre convexidade em prismas complementaresResults on convexity complementary prismsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/ccc4c1cb-2c19-407d-9411-74cfe50266a7/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/4cee5bd2-2597-42d8-be8f-327a67bcecaa/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821328http://repositorio.bc.ufg.br/tede/bitstreams/722a0830-542e-4080-9dc8-927f806b1c08/download683d9883b2ad62ac3b8bafc566b2e600MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/a00e3c59-92ab-4ac8-8d78-be157194e4e9/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Marcio Antonio Duarte - 2015.pdfTese - Marcio Antonio Duarte - 2015.pdfapplication/pdf457015http://repositorio.bc.ufg.br/tede/bitstreams/2f875963-aaf6-4b1f-96dd-8b5bb1c8a7be/download1f57686628e44a0cebc1fee7aaf0bcfcMD55TEXTTese - Marcio Antonio Duarte - 2015.pdf.txtTese - Marcio Antonio Duarte - 2015.pdf.txtExtracted Texttext/plain119651http://repositorio.bc.ufg.br/tede/bitstreams/0ba96fc1-6b10-4568-aca0-058013d19677/download9b3accf9ca5f7ce20d1a8976d2cd12d5MD56THUMBNAILTese - Marcio Antonio Duarte - 2015.pdf.jpgTese - Marcio Antonio Duarte - 2015.pdf.jpgGenerated Thumbnailimage/jpeg2296http://repositorio.bc.ufg.br/tede/bitstreams/1a013df8-40a0-463f-bb3a-df3ad8204a7b/downloadc2750cfbab5915ecdbf360b0ded42214MD57tede/48212015-10-30 03:05:00.489http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4821http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342015-10-30T05:05Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.por.fl_str_mv |
Sobre convexidade em prismas complementares |
| dc.title.alternative.eng.fl_str_mv |
Results on convexity complementary prisms |
| title |
Sobre convexidade em prismas complementares |
| spellingShingle |
Sobre convexidade em prismas complementares Duarte, Márcio Antônio Teoria dos grafos Convexidade NP-completude Prismas complementares Graph theory Convexity NP-complete Complementary prisms CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Sobre convexidade em prismas complementares |
| title_full |
Sobre convexidade em prismas complementares |
| title_fullStr |
Sobre convexidade em prismas complementares |
| title_full_unstemmed |
Sobre convexidade em prismas complementares |
| title_sort |
Sobre convexidade em prismas complementares |
| author |
Duarte, Márcio Antônio |
| author_facet |
Duarte, Márcio Antônio |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Barbosa, Rommel Melgaço |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6228227125338610 |
| dc.contributor.advisor-co1.fl_str_mv |
Szwarcfiter, Jayme L. |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2002515486942024 |
| dc.contributor.referee1.fl_str_mv |
Barbosa, Rommel Melgaço |
| dc.contributor.referee2.fl_str_mv |
Yanasse, Horacio Hideki |
| dc.contributor.referee3.fl_str_mv |
Oliveira, Carla Silva |
| dc.contributor.referee4.fl_str_mv |
Coelho, Erika Morais Martins |
| dc.contributor.referee5.fl_str_mv |
Silva, Hebert Coelho da |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9907691146700229 |
| dc.contributor.author.fl_str_mv |
Duarte, Márcio Antônio |
| contributor_str_mv |
Barbosa, Rommel Melgaço Szwarcfiter, Jayme L. Barbosa, Rommel Melgaço Yanasse, Horacio Hideki Oliveira, Carla Silva Coelho, Erika Morais Martins Silva, Hebert Coelho da |
| dc.subject.por.fl_str_mv |
Teoria dos grafos Convexidade NP-completude Prismas complementares |
| topic |
Teoria dos grafos Convexidade NP-completude Prismas complementares Graph theory Convexity NP-complete Complementary prisms CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Graph theory Convexity NP-complete Complementary prisms |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
In this work, we present some related results, especially the properties algoritimics and of complexity of a product of graphs called complementary prism. Answering some questions left open by Haynes, Slater and van der Merwe, we show that the problem of click, independent set and k-dominant set is NP-Complete for complementary prisms in general. Furthermore, we show NP-completeness results regarding the calculation of some parameters of the P3-convexity for the complementary prism graphs in general, as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that the calculation of P3-geodetic number is NP-complete for complementary prism graphs in general. As for the P3-hull number, we can show that the same can be efficiently computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete complementary to prisms bipartite graphs, but for trees, this may be calculated in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of complementary prism of these is 3. We also found a relationship between the cardinality Carathéodory set of a graph and a any Carathéodory set of complementary prism. Finally, we established an upper limit calculation the parameters: geodetic number, hull number and Carathéodory number to operations complementary prism of path, cycles and complete graphs considering the convexities P3 and geodesic. |
| publishDate |
2015 |
| dc.date.accessioned.fl_str_mv |
2015-10-29T10:04:41Z |
| dc.date.issued.fl_str_mv |
2015-04-10 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/4821 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/001300000103f |
| identifier_str_mv |
DUARTE, M. A. Sobre convexidade em prismas complementares. 2015. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015. ark:/38995/001300000103f |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/4821 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-3303550325223384799 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
-7712266734633644768 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/ccc4c1cb-2c19-407d-9411-74cfe50266a7/download http://repositorio.bc.ufg.br/tede/bitstreams/4cee5bd2-2597-42d8-be8f-327a67bcecaa/download http://repositorio.bc.ufg.br/tede/bitstreams/722a0830-542e-4080-9dc8-927f806b1c08/download http://repositorio.bc.ufg.br/tede/bitstreams/a00e3c59-92ab-4ac8-8d78-be157194e4e9/download http://repositorio.bc.ufg.br/tede/bitstreams/2f875963-aaf6-4b1f-96dd-8b5bb1c8a7be/download http://repositorio.bc.ufg.br/tede/bitstreams/0ba96fc1-6b10-4568-aca0-058013d19677/download http://repositorio.bc.ufg.br/tede/bitstreams/1a013df8-40a0-463f-bb3a-df3ad8204a7b/download |
| bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f 683d9883b2ad62ac3b8bafc566b2e600 9da0b6dfac957114c6a7714714b86306 1f57686628e44a0cebc1fee7aaf0bcfc 9b3accf9ca5f7ce20d1a8976d2cd12d5 c2750cfbab5915ecdbf360b0ded42214 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536605883432960 |