BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, Daniel Santos da
Orientador(a): Albuquerque, Victor Hugo Costa de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/73223
Resumo: SILVA, Daniel Santos da. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
id UFC-7_2582e5b64962e5690b1039525fa2f32e
oai_identifier_str oai:repositorio.ufc.br:riufc/73223
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva, Daniel Santos daAlbuquerque, Victor Hugo Costa de2023-06-29T14:52:08Z2023-06-29T14:52:08Z2023-04-28SILVA, D. S. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.http://www.repositorio.ufc.br/handle/riufc/73223SILVA, Daniel Santos da. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.Breast cancer is the type of cancer with the highest incidence and global mortality of female cancers. Thus, the adaptation of modern technologies that assist in medical diagnosis in order to accelerate, automate and reduce the subjectivity of this process is of paramount importance for an efficient treatment. Therefore, this work aims to propose a platform to compare and evaluate the proposed strategies for improving breast ultrasound images and compare them with state-of- the-art techniques by classifying them as benign, malignant, and normal. Investigations were performed on a dataset containing a total of 780 images of tumor-affected people, divided into benign, malignant, and normal. A data augmentation technique was used to scale up the corpus of images available in the chosen dataset. For this, novel image enhancement techniques were used and the Multilayer Perceptrons, k-Nearest Neighbor, and Support Vector Machines algorithms were used for classification. From the promising outcomes of the conducted experiments, it was observed that the image enhancement algorithm called bilateral together with the SVM classifier achieved the best result for the classification of breast cancer, with an overall accuracy of 96.69% and an accuracy for the detection of malignant nodules of 95.11%. Therefore, it was found that the application of image enhancement methods can help in the detection of breast cancer at a much earlier stage with better accuracy in detection.O câncer de mama é o de maior incidência e mortalidade entre os cânceres femininos. Assim, a adaptação de tecnologias modernas, que auxiliem no diagnóstico médico, são de fundamental importância para tornar o diagnostico mais rápido e preciso. Dessa forma, este trabalho tem como objetivo propor uma plataforma para aplicar e analisar técnicas de realce de imagens, obtidas por ultrassom da mama, para avaliar a influencia sobre a detecção do câncer baseada em técnicas de machine learning. Uma base de dados contendo 780 imagens, divididas em benignas, malignas e normais foi considerada. Devido a quantidade de imagens, utilizou-se a técnica Data Augmentation para ampliar a quantidade de imagens. Durante a análise dos resultados, foi observado que o algoritmo de realce denominado bilateral, combinado com o classificador SVM, obtiveram o melhor resultado para a detecção do câncer de mama, com uma precisão global de 96,69% e uma precisão para a detecção de nódulos malignos de 95,11%. Portanto, pode-se concluir que a aplicação de métodos de realce de imagem de ultrassom da mama é uma ferramenta complementar e promissora para detectar o câncer de forma rápida e precisa.breast cancer; image enhancement; biomedical engineering.BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATIONinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/73223/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2023_dis_dssilva.pdf2023_dis_dssilva.pdfapplication/pdf20023513http://repositorio.ufc.br/bitstream/riufc/73223/3/2023_dis_dssilva.pdfd8aab13e73b9acc9b2d1da26a18e578dMD53riufc/732232023-07-27 10:37:54.558oai:repositorio.ufc.br:riufc/73223Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-07-27T13:37:54Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
title BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
spellingShingle BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
Silva, Daniel Santos da
breast cancer; image enhancement; biomedical engineering.
title_short BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
title_full BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
title_fullStr BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
title_full_unstemmed BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
title_sort BREAST ULTRASOUND IMAGE ENHANCEMENT TECHNIQUES FOR CANCER DETECTION AND CLASSIFICATION
author Silva, Daniel Santos da
author_facet Silva, Daniel Santos da
author_role author
dc.contributor.author.fl_str_mv Silva, Daniel Santos da
dc.contributor.advisor1.fl_str_mv Albuquerque, Victor Hugo Costa de
contributor_str_mv Albuquerque, Victor Hugo Costa de
dc.subject.por.fl_str_mv breast cancer; image enhancement; biomedical engineering.
topic breast cancer; image enhancement; biomedical engineering.
description SILVA, Daniel Santos da. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-06-29T14:52:08Z
dc.date.available.fl_str_mv 2023-06-29T14:52:08Z
dc.date.issued.fl_str_mv 2023-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, D. S. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/73223
identifier_str_mv SILVA, D. S. Breast ultrasound image enhancement techniques for cancer detection and classification. 2023. 83f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
url http://www.repositorio.ufc.br/handle/riufc/73223
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/73223/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/73223/3/2023_dis_dssilva.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
d8aab13e73b9acc9b2d1da26a18e578d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793288581480448