Signal processing methods for large-scale multi-antenna systems

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Ribeiro, Lucas Nogueira
Orientador(a): Almeida, André Lima Férrer de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
5G
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/47501
Resumo: The data traffic demand in wireless communication systems has been growing at a fast pace with the widespread use of cellular systems and the emergence of the Internet of Things. To meet the large traffic requirements, the fifth-generation (5G) of cellular technology envisions transceiver systems operating at the millimeter wave spectrum with large-scale antenna arrays. However, this 5G system design faces many engineering challenges. Signal processing methods and architectures employed in classic multi-antenna systems are inadequate in the large-scale scenario. Standard signal processing techniques become computationally expensive and classical radio-frequency front-end architectures exhibit low energy efficiency. This thesis presents lowcomplexity and energy-efficient solutions to the design of large-scale multi-antenna systems. First, we propose multilinear filters to tackle the complexity issue in large-scale receive processing. We show that the proposed multilinear filtering methods drastically reduces the computational complexity with a slight performance deterioration compared to the classical linear approach. Concerning the energy efficiency of transceiver architectures, we investigate hybrid analog/digital (A/D) massive multiple-input multiple-output (MIMO) systems with low-resolution data converters. We present efficient precoding schemes for hybrid A/D systems with fully- and partially-connected phase-shifting networks. We also introduce low-complexity double-sided massive MIMO transceiver schemes, where both the base station and the user equipment employ large-scale antenna arrays. In particular, we leverage the multi-layer filtering strategy to reduce the computational complexity and channel state information requirements of the transceiver design. Finally, we consider the problem of channel estimation under synchronization impairments. More specifically, we develop tensor-based algorithms for channel estimation in the presence of carrier frequency offset (CFO) and phase noise (PN). We start with the frequency-flat case by assuming CFO-corrupted measurements. Then, we turn our attention to the frequency-selective case by including both CFO and PN.
id UFC-7_2691aaba14d91f9d7881ee75cf9eb0d7
oai_identifier_str oai:repositorio.ufc.br:riufc/47501
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Ribeiro, Lucas NogueiraMota, João César MouraAlmeida, André Lima Férrer de2019-11-07T13:08:09Z2019-11-07T13:08:09Z2019RIBEIRO, L. N. Signal processing methods for large-scale multi-antenna systems. 2019. 187 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/47501The data traffic demand in wireless communication systems has been growing at a fast pace with the widespread use of cellular systems and the emergence of the Internet of Things. To meet the large traffic requirements, the fifth-generation (5G) of cellular technology envisions transceiver systems operating at the millimeter wave spectrum with large-scale antenna arrays. However, this 5G system design faces many engineering challenges. Signal processing methods and architectures employed in classic multi-antenna systems are inadequate in the large-scale scenario. Standard signal processing techniques become computationally expensive and classical radio-frequency front-end architectures exhibit low energy efficiency. This thesis presents lowcomplexity and energy-efficient solutions to the design of large-scale multi-antenna systems. First, we propose multilinear filters to tackle the complexity issue in large-scale receive processing. We show that the proposed multilinear filtering methods drastically reduces the computational complexity with a slight performance deterioration compared to the classical linear approach. Concerning the energy efficiency of transceiver architectures, we investigate hybrid analog/digital (A/D) massive multiple-input multiple-output (MIMO) systems with low-resolution data converters. We present efficient precoding schemes for hybrid A/D systems with fully- and partially-connected phase-shifting networks. We also introduce low-complexity double-sided massive MIMO transceiver schemes, where both the base station and the user equipment employ large-scale antenna arrays. In particular, we leverage the multi-layer filtering strategy to reduce the computational complexity and channel state information requirements of the transceiver design. Finally, we consider the problem of channel estimation under synchronization impairments. More specifically, we develop tensor-based algorithms for channel estimation in the presence of carrier frequency offset (CFO) and phase noise (PN). We start with the frequency-flat case by assuming CFO-corrupted measurements. Then, we turn our attention to the frequency-selective case by including both CFO and PN.A demanda de trafego em sistemas de comunicações sem-fio tem crescido a largos passos devido ao uso generalizado de sistemas celulares e a emergência da Internet of Things. Para lidar com as demandas de alto trafego, a quinta geração (5G) da tecnologia celular prevê sistemas transceptores operando no espectro de ondas milimetricas com arranjos de antenas de larga escala. Porém, esse projeto de sistema 5G enfrenta diversos desafios de engenharia. Os métodos e as arquiteturas de processamento de sinais utilizados em sistemas multi-antenas clássicos são inadequados nesse cenário de larga escala. Técnicas tradicionais de processamento de sinais tornam-se computacionalmente custosas, e as arquiteturas clássicas de front-end de rádio-frequência oferecem uma baixa eficiência energética. Esta tese apresenta soluções de baixa complexidade e energeticamente eficientes para o projeto de sistemas multi-antenna de larga escala. Primeiramente, propõe-se filtros multilineares para reduzir a complexidade no processamento de recepção de larga escala. Mostra-se que os métodos de filtragem multilinear reduzem significantemente a complexidade computacional com uma pequena perda de desempenho em relação a abordagem clássica linear. Quanto a eficiência energética das arquiteturas de transceptores, investiga-se sistemas multipleinput multiple-output (MIMO) massivos híbridos analógicos/digitais (A/D) com conversores de dados de baixa resolução. Propõe-se esquemas eficientes de pré-codificação para sistemas hıbridos A/D com redes de deslocamento de fase completamente e parcialmente conectadas. Apresenta-se também esquemas de baixo custo para transceptores MIMO duplamente massivos, em que a estação base bem como os dispositivos-usuários possuem arranjos de antenas de larga escala. Propõe-se a estratégia de filtragem em múltiplas camadas para reduzir a complexidade computacional e os requerimentos de channel state information do projeto de transceptor. Finalmente, considera-se o problema de estimação de canal sob problemas de sincronismo. Mais especificamente, desenvolve-se algoritmos baseados em tensores para a estimação de canal na presença de deslocamento de frequência da portadora (CFO) e ruído de fase (PN). Trata-se inicialmente do cenário com desvanecimento plano em frequência assumindo medidas corrompidas pelo CFO. Em seguida, foca-se no cenário com desvanecimento seletivo em frequência considerando ambos CFO e PN.TeleinformáticaProcessamento de sinaisAntenas (Eletrônica)Sistemas de comunicação sem fioAlgebra multilinearInternet das coisas5GTensorsChannel estimationMillimeter waveInternet of thingsBeamformingSignal processing methods for large-scale multi-antenna systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2019_tese_lnribeiro.pdf2019_tese_lnribeiro.pdfapplication/pdf4733300http://repositorio.ufc.br/bitstream/riufc/47501/3/2019_tese_lnribeiro.pdf520f21b56588d167c058ca2df2a1f46cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/47501/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/475012020-11-26 17:41:34.837oai:repositorio.ufc.br:riufc/47501Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-11-26T20:41:34Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Signal processing methods for large-scale multi-antenna systems
title Signal processing methods for large-scale multi-antenna systems
spellingShingle Signal processing methods for large-scale multi-antenna systems
Ribeiro, Lucas Nogueira
Teleinformática
Processamento de sinais
Antenas (Eletrônica)
Sistemas de comunicação sem fio
Algebra multilinear
Internet das coisas
5G
Tensors
Channel estimation
Millimeter wave
Internet of things
Beamforming
title_short Signal processing methods for large-scale multi-antenna systems
title_full Signal processing methods for large-scale multi-antenna systems
title_fullStr Signal processing methods for large-scale multi-antenna systems
title_full_unstemmed Signal processing methods for large-scale multi-antenna systems
title_sort Signal processing methods for large-scale multi-antenna systems
author Ribeiro, Lucas Nogueira
author_facet Ribeiro, Lucas Nogueira
author_role author
dc.contributor.co-advisor.none.fl_str_mv Mota, João César Moura
dc.contributor.author.fl_str_mv Ribeiro, Lucas Nogueira
dc.contributor.advisor1.fl_str_mv Almeida, André Lima Férrer de
contributor_str_mv Almeida, André Lima Férrer de
dc.subject.por.fl_str_mv Teleinformática
Processamento de sinais
Antenas (Eletrônica)
Sistemas de comunicação sem fio
Algebra multilinear
Internet das coisas
5G
Tensors
Channel estimation
Millimeter wave
Internet of things
Beamforming
topic Teleinformática
Processamento de sinais
Antenas (Eletrônica)
Sistemas de comunicação sem fio
Algebra multilinear
Internet das coisas
5G
Tensors
Channel estimation
Millimeter wave
Internet of things
Beamforming
description The data traffic demand in wireless communication systems has been growing at a fast pace with the widespread use of cellular systems and the emergence of the Internet of Things. To meet the large traffic requirements, the fifth-generation (5G) of cellular technology envisions transceiver systems operating at the millimeter wave spectrum with large-scale antenna arrays. However, this 5G system design faces many engineering challenges. Signal processing methods and architectures employed in classic multi-antenna systems are inadequate in the large-scale scenario. Standard signal processing techniques become computationally expensive and classical radio-frequency front-end architectures exhibit low energy efficiency. This thesis presents lowcomplexity and energy-efficient solutions to the design of large-scale multi-antenna systems. First, we propose multilinear filters to tackle the complexity issue in large-scale receive processing. We show that the proposed multilinear filtering methods drastically reduces the computational complexity with a slight performance deterioration compared to the classical linear approach. Concerning the energy efficiency of transceiver architectures, we investigate hybrid analog/digital (A/D) massive multiple-input multiple-output (MIMO) systems with low-resolution data converters. We present efficient precoding schemes for hybrid A/D systems with fully- and partially-connected phase-shifting networks. We also introduce low-complexity double-sided massive MIMO transceiver schemes, where both the base station and the user equipment employ large-scale antenna arrays. In particular, we leverage the multi-layer filtering strategy to reduce the computational complexity and channel state information requirements of the transceiver design. Finally, we consider the problem of channel estimation under synchronization impairments. More specifically, we develop tensor-based algorithms for channel estimation in the presence of carrier frequency offset (CFO) and phase noise (PN). We start with the frequency-flat case by assuming CFO-corrupted measurements. Then, we turn our attention to the frequency-selective case by including both CFO and PN.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-11-07T13:08:09Z
dc.date.available.fl_str_mv 2019-11-07T13:08:09Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RIBEIRO, L. N. Signal processing methods for large-scale multi-antenna systems. 2019. 187 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/47501
identifier_str_mv RIBEIRO, L. N. Signal processing methods for large-scale multi-antenna systems. 2019. 187 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
url http://www.repositorio.ufc.br/handle/riufc/47501
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/47501/3/2019_tese_lnribeiro.pdf
http://repositorio.ufc.br/bitstream/riufc/47501/4/license.txt
bitstream.checksum.fl_str_mv 520f21b56588d167c058ca2df2a1f46c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793370268696576