Time series anomaly detection and diagnosis via manifold learning and normalizing flows
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/81121 |
Resumo: | The emergence of data collection and storage technologies has allowed the accumulation of extensive data over time. Consequently, high-dimensional time series data sets have become prevalent across diverse fields, including sensor networks, security, healthcare, manufacturing, and finances. Although it represents a substantial challenge, detecting rare events in such data sets is a fundamental task in several applications, including cyber-intrusion detection, defect analysis, fault detection, credit card fraud analysis, suspicious trajectory detection, etc. Various methods have been employed to handle this challenge, ranging from traditional approaches such as classification, clustering, distance metrics, density estimation, and statistical techniques to more contemporary solutions involving deep learning models. In this thesis, we provide a comprehensive overview of the field, present state-of-the-art methods of multivariate time series anomaly detection and diagnosis, and introduce two new approaches for solving problems involving anomaly detection in time series. The first one called aggregated anomaly detection with normalizing flows (GRADINGS) is a framework for anomaly detection in time series database, applied to trajectory data that is based on estimating the density for each trajectories segments and aggregating segments’ likelihoods into a single anomaly score. Such a strategy enables the handling of possibly large sequences of different lengths. The second approach called robust anomaly detection on multivariate time series (RANDOMS), which uses normalization flows and manifold learning techniques to solve the anomaly detection and diagnosis problems. Extensive evaluations of the proposed methods have been conducted across various applications, comparing them against several models. The results of our computational experiments demons- trate the efficacy of our approaches, consistently outperforming existing state-of-the-art anomaly detection and diagnosis methods in numerous cases. |
| id |
UFC-7_282550ef348446787679fc89ca87c762 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/81121 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Dias, Madson Luiz DantasMattos, César Lincoln Cavalcante2025-05-29T16:09:47Z2025-05-29T16:09:47Z2024DIAS, Madson Luiz Dantas. Time series anomaly detection and diagnosis via manifold learning and normalizing flows. 2025. 97 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/81121The emergence of data collection and storage technologies has allowed the accumulation of extensive data over time. Consequently, high-dimensional time series data sets have become prevalent across diverse fields, including sensor networks, security, healthcare, manufacturing, and finances. Although it represents a substantial challenge, detecting rare events in such data sets is a fundamental task in several applications, including cyber-intrusion detection, defect analysis, fault detection, credit card fraud analysis, suspicious trajectory detection, etc. Various methods have been employed to handle this challenge, ranging from traditional approaches such as classification, clustering, distance metrics, density estimation, and statistical techniques to more contemporary solutions involving deep learning models. In this thesis, we provide a comprehensive overview of the field, present state-of-the-art methods of multivariate time series anomaly detection and diagnosis, and introduce two new approaches for solving problems involving anomaly detection in time series. The first one called aggregated anomaly detection with normalizing flows (GRADINGS) is a framework for anomaly detection in time series database, applied to trajectory data that is based on estimating the density for each trajectories segments and aggregating segments’ likelihoods into a single anomaly score. Such a strategy enables the handling of possibly large sequences of different lengths. The second approach called robust anomaly detection on multivariate time series (RANDOMS), which uses normalization flows and manifold learning techniques to solve the anomaly detection and diagnosis problems. Extensive evaluations of the proposed methods have been conducted across various applications, comparing them against several models. The results of our computational experiments demons- trate the efficacy of our approaches, consistently outperforming existing state-of-the-art anomaly detection and diagnosis methods in numerous cases.O surgimento de tecnologias de coleta e armazenamento de dados permitiu o acúmulo extenso de dados ao longo do tempo. Consequentemente, conjuntos de dados de séries temporais de alta dimensão tornaram-se predominantes em diversos campos, incluindo redes de sensores, segurança, saúde, manufatura e finanças. Embora represente um desafio substancial, detectar eventos raros em tais conjuntos de dados é uma tarefa fundamental em diversas aplicações, incluindo detecção de intrusão cibernética, análise de defeitos, detecção de falhas, análise de fraude de cartão de crédito, detecção de trajetória suspeita, etc. Vários métodos têm sido empregados para lidar com esse desafio, desde abordagens tradicionais como classificação, agrupamento de dados, métodos baseados em distância, estimação de densidade e técnicas estatísticas bem como soluções mais contemporâneas envolvendo modelos de aprendizado profundo. Nesta tese, fornecemos uma visão geral abrangente do campo, apresentamos métodos do estado-da-arte para detecção e diagnóstico de anomalias em séries temporais multivariadas e introduzimos duas novas abordagens para resolver problemas envolvendo detecção de anomalias em séries temporais. A primeira abordagem, intitulada aggregated anomaly detection with normalizing flows (GRADINGS), é um framwork para detecção de anomalias em conjuntos de dados de séries temporais, aplicada a dados de trajetórias, baseada na estimativa da densidade de cada segmento de trajetória e na agregação das probabilidades dos segmentos em um único score de anomalia. Essa estratégia permite o tratamento de sequências possivelmente grandes de diferentes comprimentos. A segunda abordagem, chamada robust anomaly detection on multivariate time series (RANDOMS), utiliza normalizing flows e técnicas de manifold learning para resolver os problemas de detecção e diagnóstico de anomalias em séries temporais multivariadas. Avaliações extensivas dos métodos propostos foram conduzidas em várias aplicações, comparando-as com diversos modelos. Os resultados dos nossos experimentos computacionais demonstram a eficácia das abordagens propostas, superando consistentemente os métodos de detecção e diagnóstico de anomalias do estado-da-arte existentes em diversos casos.Time series anomaly detection and diagnosis via manifold learning and normalizing flowsTime series anomaly detection and diagnosis via manifold learning and normalizing flowsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisNormalizing flowsDetecção de anomaliasSéries temporaisManifold learningNormalizing flowsAnomaly detectionTime seriesManifold learningCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0001-7952-5755http://lattes.cnpq.br/0759411722235332http://lattes.cnpq.br/24455711610293372025-05-29ORIGINAL2024_tese_mlddias.pdf2024_tese_mlddias.pdfapplication/pdf1100603http://repositorio.ufc.br/bitstream/riufc/81121/3/2024_tese_mlddias.pdfed3dadf17715993f0a421a0bb9bd7eceMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81121/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/811212025-05-29 13:09:52.64oai:repositorio.ufc.br:riufc/81121Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-05-29T16:09:52Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| dc.title.en.pt_BR.fl_str_mv |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| title |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| spellingShingle |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows Dias, Madson Luiz Dantas CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Normalizing flows Detecção de anomalias Séries temporais Manifold learning Normalizing flows Anomaly detection Time series Manifold learning |
| title_short |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| title_full |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| title_fullStr |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| title_full_unstemmed |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| title_sort |
Time series anomaly detection and diagnosis via manifold learning and normalizing flows |
| author |
Dias, Madson Luiz Dantas |
| author_facet |
Dias, Madson Luiz Dantas |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Dias, Madson Luiz Dantas |
| dc.contributor.advisor1.fl_str_mv |
Mattos, César Lincoln Cavalcante |
| contributor_str_mv |
Mattos, César Lincoln Cavalcante |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Normalizing flows Detecção de anomalias Séries temporais Manifold learning Normalizing flows Anomaly detection Time series Manifold learning |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Normalizing flows Detecção de anomalias Séries temporais Manifold learning |
| dc.subject.en.pt_BR.fl_str_mv |
Normalizing flows Anomaly detection Time series Manifold learning |
| description |
The emergence of data collection and storage technologies has allowed the accumulation of extensive data over time. Consequently, high-dimensional time series data sets have become prevalent across diverse fields, including sensor networks, security, healthcare, manufacturing, and finances. Although it represents a substantial challenge, detecting rare events in such data sets is a fundamental task in several applications, including cyber-intrusion detection, defect analysis, fault detection, credit card fraud analysis, suspicious trajectory detection, etc. Various methods have been employed to handle this challenge, ranging from traditional approaches such as classification, clustering, distance metrics, density estimation, and statistical techniques to more contemporary solutions involving deep learning models. In this thesis, we provide a comprehensive overview of the field, present state-of-the-art methods of multivariate time series anomaly detection and diagnosis, and introduce two new approaches for solving problems involving anomaly detection in time series. The first one called aggregated anomaly detection with normalizing flows (GRADINGS) is a framework for anomaly detection in time series database, applied to trajectory data that is based on estimating the density for each trajectories segments and aggregating segments’ likelihoods into a single anomaly score. Such a strategy enables the handling of possibly large sequences of different lengths. The second approach called robust anomaly detection on multivariate time series (RANDOMS), which uses normalization flows and manifold learning techniques to solve the anomaly detection and diagnosis problems. Extensive evaluations of the proposed methods have been conducted across various applications, comparing them against several models. The results of our computational experiments demons- trate the efficacy of our approaches, consistently outperforming existing state-of-the-art anomaly detection and diagnosis methods in numerous cases. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024 |
| dc.date.accessioned.fl_str_mv |
2025-05-29T16:09:47Z |
| dc.date.available.fl_str_mv |
2025-05-29T16:09:47Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DIAS, Madson Luiz Dantas. Time series anomaly detection and diagnosis via manifold learning and normalizing flows. 2025. 97 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/81121 |
| identifier_str_mv |
DIAS, Madson Luiz Dantas. Time series anomaly detection and diagnosis via manifold learning and normalizing flows. 2025. 97 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/81121 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/81121/3/2024_tese_mlddias.pdf http://repositorio.ufc.br/bitstream/riufc/81121/4/license.txt |
| bitstream.checksum.fl_str_mv |
ed3dadf17715993f0a421a0bb9bd7ece 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793196492390400 |