PEG: Local differential privacy for edge-attributed graphs

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Mendonça, André Luís da Costa
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/78266
Resumo: Edge-attributed graphs are a particular class of graphs designed to represent networks whose edge content indicates a relationship between two nodes. The study of edge-attributed graphs finds applications in diverse fields, such as anomaly detection, mobility analysis, and community search. Since edge-attributed graphs usually contain sensitive information, preserving privacy when releasing this data type for graph analytics becomes an important issue. In this context, local differential privacy (LDP) has emerged as a robust definition for data release under solid privacy guarantees. However, existing graph LDP techniques in the literature primarily focus on traditional graph structures without considering the nuanced attributes associated with edges in attributed graphs. This paper introduces PEG, a novel approach designed to release edge-attributed graphs with local differential privacy guarantees. Combining partitioning and clustering techniques enables more effective noise distribution among similar nodes, which preserves the inherent structure and relationships within the released graph. Extensive experiments on real-world datasets show that PEG can effectively release useful and private edge-attributed graphs, enabling subsequent computation of various graph analysis metrics with high utility, including applications in community detection.
id UFC-7_2c4b9b6f1cdf1b438ccf78036aaf72eb
oai_identifier_str oai:repositorio.ufc.br:riufc/78266
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Mendonça, André Luís da CostaMachado, Javam de Castro2024-09-24T11:39:15Z2024-09-24T11:39:15Z2024MENDONÇA, André Luís da Costa. PEG: Local differential privacy for edge-attributed graphs. 2024. 103 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/78266Edge-attributed graphs are a particular class of graphs designed to represent networks whose edge content indicates a relationship between two nodes. The study of edge-attributed graphs finds applications in diverse fields, such as anomaly detection, mobility analysis, and community search. Since edge-attributed graphs usually contain sensitive information, preserving privacy when releasing this data type for graph analytics becomes an important issue. In this context, local differential privacy (LDP) has emerged as a robust definition for data release under solid privacy guarantees. However, existing graph LDP techniques in the literature primarily focus on traditional graph structures without considering the nuanced attributes associated with edges in attributed graphs. This paper introduces PEG, a novel approach designed to release edge-attributed graphs with local differential privacy guarantees. Combining partitioning and clustering techniques enables more effective noise distribution among similar nodes, which preserves the inherent structure and relationships within the released graph. Extensive experiments on real-world datasets show that PEG can effectively release useful and private edge-attributed graphs, enabling subsequent computation of various graph analysis metrics with high utility, including applications in community detection.Grafos com atributos nas arestas são uma classe particular de grafos projetados para representar redes nas quais o conteúdo das arestas indica um tipo de relacionamento entre dois nós. O estudo de grafos com atributos nas arestas encontra aplicações em diversos campos, como detecção de anomalias, análise de mobilidade e busca de comunidades. No entanto, como os grafos com atributos nas arestas geralmente contêm informações sensíveis, a preservação da privacidade ao liberar esse tipo de dado para análise de grafos torna-se uma questão importante. Nesse contexto, a privacidade diferencial local (PDL) emergiu como uma definição robusta para a liberação de dados sob garantias sólidas de privacidade. No entanto, as técnicas existentes de PDL para grafos na literatura se concentram principalmente em estruturas de grafos tradicionais, sem considerar os atributos associados às arestas em grafos com atributos. Neste trabalho, introduzimos o PEG, uma abordagem inovadora projetada para liberar grafos com atributos nas arestas com garantias de privacidade diferencial local. Combinando técnicas de particionamento e agrupamento, possibilitamos uma distribuição mais eficaz do ruído entre nós similares, preservando a estrutura e os relacionamentos inerentes dentro do grafo liberado. Experimentos extensivos em conjuntos de dados do mundo real mostram que o PEG pode liberar de forma eficaz grafos com atributos nas arestas que são úteis e privados, permitindo a subsequente computação de várias métricas de análise de grafos com alta utilidade, incluindo aplicações na detecção de comunidades.PEG: Local differential privacy for edge-attributed graphsPEG: Local differential privacy for edge-attributed graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPrivacidade diferencial localGrafos com atributos nas arestasAnálise de grafosLocal differential privacyEdge-attributed graphsGraph analyticsCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/6186580431759759http://lattes.cnpq.br/98849805189862252024-09-24ORIGINAL2024_tese_alcmendonca.pdf2024_tese_alcmendonca.pdfapplication/pdf4680691http://repositorio.ufc.br/bitstream/riufc/78266/3/2024_tese_alcmendonca.pdf0b8c3727950d3d23952e98d989828fd3MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78266/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/782662024-09-24 08:39:16.906oai:repositorio.ufc.br:riufc/78266Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-24T11:39:16Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv PEG: Local differential privacy for edge-attributed graphs
dc.title.en.pt_BR.fl_str_mv PEG: Local differential privacy for edge-attributed graphs
title PEG: Local differential privacy for edge-attributed graphs
spellingShingle PEG: Local differential privacy for edge-attributed graphs
Mendonça, André Luís da Costa
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial local
Grafos com atributos nas arestas
Análise de grafos
Local differential privacy
Edge-attributed graphs
Graph analytics
title_short PEG: Local differential privacy for edge-attributed graphs
title_full PEG: Local differential privacy for edge-attributed graphs
title_fullStr PEG: Local differential privacy for edge-attributed graphs
title_full_unstemmed PEG: Local differential privacy for edge-attributed graphs
title_sort PEG: Local differential privacy for edge-attributed graphs
author Mendonça, André Luís da Costa
author_facet Mendonça, André Luís da Costa
author_role author
dc.contributor.author.fl_str_mv Mendonça, André Luís da Costa
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial local
Grafos com atributos nas arestas
Análise de grafos
Local differential privacy
Edge-attributed graphs
Graph analytics
dc.subject.ptbr.pt_BR.fl_str_mv Privacidade diferencial local
Grafos com atributos nas arestas
Análise de grafos
dc.subject.en.pt_BR.fl_str_mv Local differential privacy
Edge-attributed graphs
Graph analytics
description Edge-attributed graphs are a particular class of graphs designed to represent networks whose edge content indicates a relationship between two nodes. The study of edge-attributed graphs finds applications in diverse fields, such as anomaly detection, mobility analysis, and community search. Since edge-attributed graphs usually contain sensitive information, preserving privacy when releasing this data type for graph analytics becomes an important issue. In this context, local differential privacy (LDP) has emerged as a robust definition for data release under solid privacy guarantees. However, existing graph LDP techniques in the literature primarily focus on traditional graph structures without considering the nuanced attributes associated with edges in attributed graphs. This paper introduces PEG, a novel approach designed to release edge-attributed graphs with local differential privacy guarantees. Combining partitioning and clustering techniques enables more effective noise distribution among similar nodes, which preserves the inherent structure and relationships within the released graph. Extensive experiments on real-world datasets show that PEG can effectively release useful and private edge-attributed graphs, enabling subsequent computation of various graph analysis metrics with high utility, including applications in community detection.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-09-24T11:39:15Z
dc.date.available.fl_str_mv 2024-09-24T11:39:15Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENDONÇA, André Luís da Costa. PEG: Local differential privacy for edge-attributed graphs. 2024. 103 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/78266
identifier_str_mv MENDONÇA, André Luís da Costa. PEG: Local differential privacy for edge-attributed graphs. 2024. 103 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/78266
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/78266/3/2024_tese_alcmendonca.pdf
http://repositorio.ufc.br/bitstream/riufc/78266/4/license.txt
bitstream.checksum.fl_str_mv 0b8c3727950d3d23952e98d989828fd3
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793103279226880