Differentially private release of count-weighted graphs

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Brito, Felipe Timbó
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/75056
Resumo: Many complex systems are commonly modeled as count-weighted graphs, where nodes represent entities, edges model relationships between them and edge weights define some counting statistics associated with each relationship. As graph data usually contain sensitive information, preserving privacy when releasing this type of data becomes an important issue. In this context, differential privacy (DP) has become the de facto standard for data release under strong mathematical guarantees. When dealing with DP for weighted graphs, most state-of-the-art works assume that the graph topology is known. However, in several real-world applications, the privacy of the graph topology also needs to be ensured. In this dissertation, we aim to bridge the gap between DP and count-weighted graph data release, considering both graph structure and edge weights as private information. We first adapt the weighted graph DP definition to take into account the privacy of the graph structure. We then introduce a scalable technique to randomly add noise to the edge weights and to the graph topology. We also leverage the post-processing property of DP to improve the data utility, considering graph domain constraints. Finally, these combined contributions are used as the foundation for the development of two novel approaches to privately releasing count-weighted graphs under the notions of global and local DP. Experiments using real-world graph data demonstrate the superiority of our approaches in terms of utility over existing techniques, enabling subsequent computation of a variety of statistics on the released graph with high utility, in some cases comparable to the non-private results.
id UFC-7_d226b82f26b58f522453b1d43d7eeb1d
oai_identifier_str oai:repositorio.ufc.br:riufc/75056
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Brito, Felipe TimbóMachado, Javam de Castro2023-11-24T17:26:21Z2023-11-24T17:26:21Z2023BRITO, Felipe Timbó. Differentially private release of count-weighted graphs. 2023. 102 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/75056Many complex systems are commonly modeled as count-weighted graphs, where nodes represent entities, edges model relationships between them and edge weights define some counting statistics associated with each relationship. As graph data usually contain sensitive information, preserving privacy when releasing this type of data becomes an important issue. In this context, differential privacy (DP) has become the de facto standard for data release under strong mathematical guarantees. When dealing with DP for weighted graphs, most state-of-the-art works assume that the graph topology is known. However, in several real-world applications, the privacy of the graph topology also needs to be ensured. In this dissertation, we aim to bridge the gap between DP and count-weighted graph data release, considering both graph structure and edge weights as private information. We first adapt the weighted graph DP definition to take into account the privacy of the graph structure. We then introduce a scalable technique to randomly add noise to the edge weights and to the graph topology. We also leverage the post-processing property of DP to improve the data utility, considering graph domain constraints. Finally, these combined contributions are used as the foundation for the development of two novel approaches to privately releasing count-weighted graphs under the notions of global and local DP. Experiments using real-world graph data demonstrate the superiority of our approaches in terms of utility over existing techniques, enabling subsequent computation of a variety of statistics on the released graph with high utility, in some cases comparable to the non-private results.Muitos sistemas complexos são comumente modelados como grafos ponderados de contagem, onde os nós representam entidades, as arestas modelam as relações entre eles e os pesos das arestas definem alguma estatística de contagem associada a cada relação. Como dados em formato de grafo geralmente contêm informações confidenciais, a preservação de privacidade no compartilhamento desse tipo de dado torna-se uma questão importante. Nesse contexto, a privacidade diferencial (PD) tornou-se o padrão para o compartilhamento de dados sob fortes garantias matemáticas. Ao lidar com PD para grafos ponderados, a maioria dos trabalhos recentes assumem que a topologia do grafo é conhecida. Entretanto, em diversas aplicações do mundo real, a privacidade da topologia do grafo também precisa ser assegurada. Nesta tese, pretendemos preencher a lacuna entre o compartilhamento de dados de grafos ponderados de contagem e privacidade diferencial, considerando tanto a estrutura do grafo quanto os pesos das arestas como informações privadas. Primeiro adaptamos a definição de PD em grafos ponderados para levar em consideração a privacidade da estrutura do grafo. Em seguida, introduzimos uma técnica escalável para adicionar aleatoriamente ruído aos pesos das arestas e à topologia do grafo. Também aproveitamos a propriedade de pós-processamento da PD para melhorar a utilidade dos dados, considerando restrições do domínio em grafos. Finalmente, essas contribuições combinadas são utilizadas como base para o desenvolvimento de duas novas abordagens para o compartilhamento privado de grafos ponderados de contagem sob as noções de PD global e local. Experimentos utilizando grafos do mundo real demonstram a superioridade das nossas abordagens em relação à utilidade sobre técnicas já existentes, permitindo a computação subsequente de uma variedade de estatísticas no grafo compartilhado com alta utilidade, em alguns casos comparáveis aos resultados originais.Differentially private release of count-weighted graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPrivacidade diferencialPrivacidade diferencial localGrafos ponderados de contagemDifferential privacyLocal-DPCount-weighted graphsCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/4819140338774766http://lattes.cnpq.br/98849805189862252023LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/75056/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2023_tese_ftbrito.pdf2023_tese_ftbrito.pdfapplication/pdf5224879http://repositorio.ufc.br/bitstream/riufc/75056/3/2023_tese_ftbrito.pdfa058a74cd1de7b8b4fac8aaf9fba8687MD53riufc/750562023-11-24 14:26:22.357oai:repositorio.ufc.br:riufc/75056Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-11-24T17:26:22Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Differentially private release of count-weighted graphs
title Differentially private release of count-weighted graphs
spellingShingle Differentially private release of count-weighted graphs
Brito, Felipe Timbó
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial
Privacidade diferencial local
Grafos ponderados de contagem
Differential privacy
Local-DP
Count-weighted graphs
title_short Differentially private release of count-weighted graphs
title_full Differentially private release of count-weighted graphs
title_fullStr Differentially private release of count-weighted graphs
title_full_unstemmed Differentially private release of count-weighted graphs
title_sort Differentially private release of count-weighted graphs
author Brito, Felipe Timbó
author_facet Brito, Felipe Timbó
author_role author
dc.contributor.author.fl_str_mv Brito, Felipe Timbó
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial
Privacidade diferencial local
Grafos ponderados de contagem
Differential privacy
Local-DP
Count-weighted graphs
dc.subject.ptbr.pt_BR.fl_str_mv Privacidade diferencial
Privacidade diferencial local
Grafos ponderados de contagem
dc.subject.en.pt_BR.fl_str_mv Differential privacy
Local-DP
Count-weighted graphs
description Many complex systems are commonly modeled as count-weighted graphs, where nodes represent entities, edges model relationships between them and edge weights define some counting statistics associated with each relationship. As graph data usually contain sensitive information, preserving privacy when releasing this type of data becomes an important issue. In this context, differential privacy (DP) has become the de facto standard for data release under strong mathematical guarantees. When dealing with DP for weighted graphs, most state-of-the-art works assume that the graph topology is known. However, in several real-world applications, the privacy of the graph topology also needs to be ensured. In this dissertation, we aim to bridge the gap between DP and count-weighted graph data release, considering both graph structure and edge weights as private information. We first adapt the weighted graph DP definition to take into account the privacy of the graph structure. We then introduce a scalable technique to randomly add noise to the edge weights and to the graph topology. We also leverage the post-processing property of DP to improve the data utility, considering graph domain constraints. Finally, these combined contributions are used as the foundation for the development of two novel approaches to privately releasing count-weighted graphs under the notions of global and local DP. Experiments using real-world graph data demonstrate the superiority of our approaches in terms of utility over existing techniques, enabling subsequent computation of a variety of statistics on the released graph with high utility, in some cases comparable to the non-private results.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-24T17:26:21Z
dc.date.available.fl_str_mv 2023-11-24T17:26:21Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRITO, Felipe Timbó. Differentially private release of count-weighted graphs. 2023. 102 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/75056
identifier_str_mv BRITO, Felipe Timbó. Differentially private release of count-weighted graphs. 2023. 102 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.
url http://repositorio.ufc.br/handle/riufc/75056
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/75056/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/75056/3/2023_tese_ftbrito.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a058a74cd1de7b8b4fac8aaf9fba8687
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793087284248576