Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/81760 |
Resumo: | In this thesis, we study the structural and geometric properties of random graph models through two interconnected investigations. First, we analyze the structural phase transition in random acyclic graphs, providing fundamental insights into the topological properties of networks. By exploiting the exact combinatorial enumeration possible for acyclic structures, we derive an expression for the entropy and determine critical transition points and critical exponents. Our results, validated by Monte Carlo simulations, establish connections with mean-field percolation theory, offering new perspectives on the subcritical regime of random acyclic graphs. Subsequently, we investigate scaling properties in critical percolation clusters through various constructions of spanning trees (MPT, DFS, RFS, MST) embedded in these clusters. We reveal universal scaling laws governing the relationship between chemical and Euclidean distances, characterized by critical exponents dependent on the tree topology. Our analysis shows that MPTs reflect fractal dimensions of the shortest path, while MSTs correspond to dimensions of the optimal path. For DFS and RFS trees, we identify dimension-dependent behaviors, including a new critical exponent (θ1 = 1.575) for DFS in d = 3. We establish fundamental relations among the scaling exponents θ1, θ2, the fractal dimension df, and the spreading dimension dℓ, demonstrating that θ1 = 1/θ2 must hold for scaling consistency. Together, these results provide comprehensive insights both into structural transitions in graph ensembles and the geometric organization of critical clusters, with implications for network science and transport in disordered systems. |
| id |
UFC-7_48c2e34b3306a782337945ec35fc255a |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/81760 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Soares, Edson AraújoMoreira, André Auto2025-07-30T16:31:08Z2025-07-30T16:31:08Z2025SOARES, Edson Araújo. Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/81760In this thesis, we study the structural and geometric properties of random graph models through two interconnected investigations. First, we analyze the structural phase transition in random acyclic graphs, providing fundamental insights into the topological properties of networks. By exploiting the exact combinatorial enumeration possible for acyclic structures, we derive an expression for the entropy and determine critical transition points and critical exponents. Our results, validated by Monte Carlo simulations, establish connections with mean-field percolation theory, offering new perspectives on the subcritical regime of random acyclic graphs. Subsequently, we investigate scaling properties in critical percolation clusters through various constructions of spanning trees (MPT, DFS, RFS, MST) embedded in these clusters. We reveal universal scaling laws governing the relationship between chemical and Euclidean distances, characterized by critical exponents dependent on the tree topology. Our analysis shows that MPTs reflect fractal dimensions of the shortest path, while MSTs correspond to dimensions of the optimal path. For DFS and RFS trees, we identify dimension-dependent behaviors, including a new critical exponent (θ1 = 1.575) for DFS in d = 3. We establish fundamental relations among the scaling exponents θ1, θ2, the fractal dimension df, and the spreading dimension dℓ, demonstrating that θ1 = 1/θ2 must hold for scaling consistency. Together, these results provide comprehensive insights both into structural transitions in graph ensembles and the geometric organization of critical clusters, with implications for network science and transport in disordered systems.Nesta tese, estudamos as propriedades estruturais e geométricas em modelos de grafos aleatórios através de duas investigações interligadas. Primeiramente, estudamos a transição de fase estrutural em grafos acíclicos aleatórios, fornecendo insights fundamentais sobre propriedades topológicas de redes. Explorando a enumeração combinatória exata possível para estruturas acíclicas, derivamos uma expressão para a entropia e determinamos pontos críticos de transição e expoentes críticos. Nossos resultados, validados por simulações de Monte Carlo, estabelecem conexões com a teoria de percolação de campo médio, oferecendo novas perspectivas sobre o regime subcrítico de grafos acíclico aleatórios. Na sequência, investigamos propriedades de escala em aglomerados críticos de percolação através de diversas construções de spanning trees (MPT, DFS, RFS, MST) imbuídas nestes aglomerados. Revelamos leis de escala universais que governam a relação entre distâncias químicas e euclidianas, caracterizadas por expoentes críticos que dependem da topologia da árvore. Nossa análise mostra que MPTs refletem dimensões fractais de caminho mínimo, enquanto MSTs correspondem a dimensões de caminho ótimo. Para árvores de DFS e RFS, identificamos comportamentos dependentes da dimensão, incluindo um novo expoente crítico (θ1 = 1.575) para DFS em d = 3. Estabelecemos relações fundamentais entre os expoentes de escala θ1, θ2, a dimensão fractal df e a dimensão de espalhamento dℓ, demonstrando que θ1 = 1/θ2 deve valer para consistência de escala. Juntos, estes resultados fornecem insights abrangentes tanto sobre transições estruturais em ensembles de grafos quanto sobre a organização geométrica de aglomerados críticos, com implicações para ciência de redes e transporte em sistemas desordenados.SOARES, Edson Araújo. Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025.Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisÁrvoresPercolaçãoAlgoritmo de Monte CarloTreesPercolationMonte Carlo algorithmCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2025ORIGINAL2025_tese_easoares.pdf2025_tese_easoares.pdfapplication/pdf2305104http://repositorio.ufc.br/bitstream/riufc/81760/5/2025_tese_easoares.pdf7c0162e7b177950c295f1792dd7dbc0cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81760/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56riufc/817602025-07-30 13:31:10.171oai:repositorio.ufc.br:riufc/81760Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-07-30T16:31:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| title |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| spellingShingle |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas Soares, Edson Araújo CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA Árvores Percolação Algoritmo de Monte Carlo Trees Percolation Monte Carlo algorithm |
| title_short |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| title_full |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| title_fullStr |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| title_full_unstemmed |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| title_sort |
Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas |
| author |
Soares, Edson Araújo |
| author_facet |
Soares, Edson Araújo |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Soares, Edson Araújo |
| dc.contributor.advisor1.fl_str_mv |
Moreira, André Auto |
| contributor_str_mv |
Moreira, André Auto |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA Árvores Percolação Algoritmo de Monte Carlo Trees Percolation Monte Carlo algorithm |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Árvores Percolação Algoritmo de Monte Carlo |
| dc.subject.en.pt_BR.fl_str_mv |
Trees Percolation Monte Carlo algorithm |
| description |
In this thesis, we study the structural and geometric properties of random graph models through two interconnected investigations. First, we analyze the structural phase transition in random acyclic graphs, providing fundamental insights into the topological properties of networks. By exploiting the exact combinatorial enumeration possible for acyclic structures, we derive an expression for the entropy and determine critical transition points and critical exponents. Our results, validated by Monte Carlo simulations, establish connections with mean-field percolation theory, offering new perspectives on the subcritical regime of random acyclic graphs. Subsequently, we investigate scaling properties in critical percolation clusters through various constructions of spanning trees (MPT, DFS, RFS, MST) embedded in these clusters. We reveal universal scaling laws governing the relationship between chemical and Euclidean distances, characterized by critical exponents dependent on the tree topology. Our analysis shows that MPTs reflect fractal dimensions of the shortest path, while MSTs correspond to dimensions of the optimal path. For DFS and RFS trees, we identify dimension-dependent behaviors, including a new critical exponent (θ1 = 1.575) for DFS in d = 3. We establish fundamental relations among the scaling exponents θ1, θ2, the fractal dimension df, and the spreading dimension dℓ, demonstrating that θ1 = 1/θ2 must hold for scaling consistency. Together, these results provide comprehensive insights both into structural transitions in graph ensembles and the geometric organization of critical clusters, with implications for network science and transport in disordered systems. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-07-30T16:31:08Z |
| dc.date.available.fl_str_mv |
2025-07-30T16:31:08Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOARES, Edson Araújo. Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/81760 |
| identifier_str_mv |
SOARES, Edson Araújo. Organização estrutural e geométrica de redes: grafos acíclicos e árvores críticas. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/81760 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/81760/5/2025_tese_easoares.pdf http://repositorio.ufc.br/bitstream/riufc/81760/6/license.txt |
| bitstream.checksum.fl_str_mv |
7c0162e7b177950c295f1792dd7dbc0c 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793237463400448 |