Códigos de grupo sobre grupos não abelianos.
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/32069 |
Resumo: | Let G be a finite group and F a field. We show that all G-codes over F are abelian if the order of G is less than 24, but for F = Z5 and G = S4 there exist non-abelian G-codes over F, answering to an open problem posed in BERNAL, J. J, DEL RÍO, A, and SIMÓN, J. J (2009). This problem is related to the decomposability of a group as the product of two abelian subgroups. We consider this problem in the case of p-groups, finding the minimal order for which all p-groups of such order are decomposable. Finally, we study if the fact that all G-codes are abelian remains true when the base field is changed. |
| id |
UFC-7_49fecf9569a02094d98852641c448ead |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/32069 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Souza, Emanoel Ferreira deLópez, Consuelo MartínezRodrigues, Rodrigo Lucas2018-05-21T14:01:26Z2018-05-21T14:01:26Z2018-02-19SOUZA, Emanoel Ferreira de. Códigos de grupo sobre grupos não abelianos. 2018. 59 f. Dissertação (Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/32069Let G be a finite group and F a field. We show that all G-codes over F are abelian if the order of G is less than 24, but for F = Z5 and G = S4 there exist non-abelian G-codes over F, answering to an open problem posed in BERNAL, J. J, DEL RÍO, A, and SIMÓN, J. J (2009). This problem is related to the decomposability of a group as the product of two abelian subgroups. We consider this problem in the case of p-groups, finding the minimal order for which all p-groups of such order are decomposable. Finally, we study if the fact that all G-codes are abelian remains true when the base field is changed.Sejam G um grupo finito e F um corpo. Mostramos que todos os G-códigos sobre F são abelianos se a ordem de G ´e menor que 24, mas para F = Z5 e G = S4 existe um G-código não abeliano sobre F, respondendo uma questão em aberto proposta por BERNAL, J. J, DEL RÍO, A, and SIMÓN, J. J (2009). Este problema está relacionado à existência de decomposição de um grupo como o produto de dois subgrupos abelianos. Consideramos este problema no caso de p-grupos, encontrando uma ordem minimal para a qual todos os p-grupos de tal ordem admitem a decomposição mencionada. Finalmente, estudamos quais imposições devem ser feitas a um corpo finito F e uma extensão finita E deste, para que todos os G-códigos abelianos sobre F sejam ainda códigos abelianos sobre E ou os G-códigos abelianos sobre E sejam códigos abelianos sobre F.Decomposição abelianaCódigos de grupo abelianosCorpo baseAbelian decompositionAbelian group codesBase fieldCódigos de grupo sobre grupos não abelianos.Group codes on non-abelian groups.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_efsouza.pdf2018_dis_efsouza.pdfapplication/pdf442904http://repositorio.ufc.br/bitstream/riufc/32069/5/2018_dis_efsouza.pdf131cc3593045a6e43b031cdb037dcd47MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/32069/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56riufc/320692019-01-04 08:37:35.274oai:repositorio.ufc.br:riufc/32069Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T11:37:35Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Códigos de grupo sobre grupos não abelianos. |
| dc.title.en.pt_BR.fl_str_mv |
Group codes on non-abelian groups. |
| title |
Códigos de grupo sobre grupos não abelianos. |
| spellingShingle |
Códigos de grupo sobre grupos não abelianos. Souza, Emanoel Ferreira de Decomposição abeliana Códigos de grupo abelianos Corpo base Abelian decomposition Abelian group codes Base field |
| title_short |
Códigos de grupo sobre grupos não abelianos. |
| title_full |
Códigos de grupo sobre grupos não abelianos. |
| title_fullStr |
Códigos de grupo sobre grupos não abelianos. |
| title_full_unstemmed |
Códigos de grupo sobre grupos não abelianos. |
| title_sort |
Códigos de grupo sobre grupos não abelianos. |
| author |
Souza, Emanoel Ferreira de |
| author_facet |
Souza, Emanoel Ferreira de |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
López, Consuelo Martínez |
| dc.contributor.author.fl_str_mv |
Souza, Emanoel Ferreira de |
| dc.contributor.advisor1.fl_str_mv |
Rodrigues, Rodrigo Lucas |
| contributor_str_mv |
Rodrigues, Rodrigo Lucas |
| dc.subject.por.fl_str_mv |
Decomposição abeliana Códigos de grupo abelianos Corpo base Abelian decomposition Abelian group codes Base field |
| topic |
Decomposição abeliana Códigos de grupo abelianos Corpo base Abelian decomposition Abelian group codes Base field |
| description |
Let G be a finite group and F a field. We show that all G-codes over F are abelian if the order of G is less than 24, but for F = Z5 and G = S4 there exist non-abelian G-codes over F, answering to an open problem posed in BERNAL, J. J, DEL RÍO, A, and SIMÓN, J. J (2009). This problem is related to the decomposability of a group as the product of two abelian subgroups. We consider this problem in the case of p-groups, finding the minimal order for which all p-groups of such order are decomposable. Finally, we study if the fact that all G-codes are abelian remains true when the base field is changed. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-05-21T14:01:26Z |
| dc.date.available.fl_str_mv |
2018-05-21T14:01:26Z |
| dc.date.issued.fl_str_mv |
2018-02-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOUZA, Emanoel Ferreira de. Códigos de grupo sobre grupos não abelianos. 2018. 59 f. Dissertação (Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/32069 |
| identifier_str_mv |
SOUZA, Emanoel Ferreira de. Códigos de grupo sobre grupos não abelianos. 2018. 59 f. Dissertação (Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
| url |
http://www.repositorio.ufc.br/handle/riufc/32069 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/32069/5/2018_dis_efsouza.pdf http://repositorio.ufc.br/bitstream/riufc/32069/6/license.txt |
| bitstream.checksum.fl_str_mv |
131cc3593045a6e43b031cdb037dcd47 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793314329264128 |