Light curve imaging for exoplanet detection with deep learning: a conceptual trial

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Silva Filho, Paulo Cleber Farias da
Orientador(a): Freitas, Daniel Brito de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/76416
Resumo: The ever-growing number of space missions has made manual searching for exoplanet candidates infeasible due to the increasing volume of data. Consequently, the astrophysics community has extensively employed machine learning methods not only to handle the sheer amount of available data but also to enhance the sensitivity of detections concerning the signal noise inherent in relevant observational cases. This work builds upon and refines a previous review study, also presenting a conceptual trial for an alternative method to those previously discussed in the literature for classifying potential exoplanet signals using deep learning. We developed, trained, and evaluated Convolutional Neural Network (CNN) models to analyze light curves from the Kepler space mission, allowing inference on whether a given signal refers to an exoplanet or not. The distinction of this work lies in the imaging of these light curves before they are passed to the CNNs, which practically increases the number of dimensions available for analysis and enables the use of powerful and successful computer vision techniques for classification problems. Our best model ranks plausible planet signals higher than false-positive signals 97.22% of the time in our test dataset and demonstrates promising performance on entirely new data from other datasets. Our best model also shows a moderate capacity to generalize what it learned with data from other space missions, such as K2 and TESS. A good performance on entirely new data is a critical characteristic for upcoming space missions such as PLATO, and is work in progress at time of writing. Additionally, we provide new perspectives on how this imaging method can be further explored and tested in future works.
id UFC-7_5593e30c62b8399d7e044f13b43fed61
oai_identifier_str oai:repositorio.ufc.br:riufc/76416
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva Filho, Paulo Cleber Farias daReis, Saulo Davi Soares eFreitas, Daniel Brito de2024-03-06T19:44:24Z2024-03-06T19:44:24Z2024SILVA FILHO, P. C. F. Light curve imaging for exoplanet detection with deep learning: a conceptual trial. 2024. Dissertação (Mestrado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/76416The ever-growing number of space missions has made manual searching for exoplanet candidates infeasible due to the increasing volume of data. Consequently, the astrophysics community has extensively employed machine learning methods not only to handle the sheer amount of available data but also to enhance the sensitivity of detections concerning the signal noise inherent in relevant observational cases. This work builds upon and refines a previous review study, also presenting a conceptual trial for an alternative method to those previously discussed in the literature for classifying potential exoplanet signals using deep learning. We developed, trained, and evaluated Convolutional Neural Network (CNN) models to analyze light curves from the Kepler space mission, allowing inference on whether a given signal refers to an exoplanet or not. The distinction of this work lies in the imaging of these light curves before they are passed to the CNNs, which practically increases the number of dimensions available for analysis and enables the use of powerful and successful computer vision techniques for classification problems. Our best model ranks plausible planet signals higher than false-positive signals 97.22% of the time in our test dataset and demonstrates promising performance on entirely new data from other datasets. Our best model also shows a moderate capacity to generalize what it learned with data from other space missions, such as K2 and TESS. A good performance on entirely new data is a critical characteristic for upcoming space missions such as PLATO, and is work in progress at time of writing. Additionally, we provide new perspectives on how this imaging method can be further explored and tested in future works.O número cada vez maior de missões espaciais tornou inviável a busca manual por candidatos a exoplanetas devido ao crescente volume de dados. Consequentemente, a comunidade astrofísica tem empregado extensivamente métodos de aprendizagem automática não só para lidar com a grande quantidade de dados disponíveis, mas também para aumentar a sensibilidade das detecções relativas ao ruído do sinal inerente em casos observacionais relevantes. Este trabalho baseia-se e refina um estudo de revisão anterior, apresentando também um ensaio conceitual para um método alternativo aos discutidos anteriormente na literatura para classificação de potenciais sinais de exoplanetas usando aprendizagem profunda. Desenvolvemos, treinamos e avaliamos modelos de Rede Neural Convolucional (CNN) para analisar curvas de luz da missão espacial Kepler, permitindo inferir se um determinado sinal se refere a um exoplaneta ou não. O diferencial deste trabalho está na geração de imagens dessas curvas de luz antes de serem passadas para as CNNs, o que praticamente aumenta o número de dimensões disponíveis para análise e permite o uso de técnicas poderosas e bem-sucedidas de visão computacional para problemas de classificação. Nosso melhor modelo classifica os sinais plausíveis do planeta acima dos sinais falso-positivos 97,22% das vezes em nosso conjunto de dados de teste e demonstra um desempenho promissor em dados inteiramente novos de outros conjuntos de dados. Nosso melhor modelo também mostra uma capacidade moderada de generalizar o que aprendeu com dados de outras missões espaciais, como K2 e TESS. Um bom desempenho em dados inteiramente novos é uma característica crítica para as próximas missões espaciais, como a PLATO, e é um trabalho em andamento no momento da escrita. Além disso, fornecemos novas perspectivas sobre como este método de imagem pode ser mais explorado e testado em trabalhos futuros.Light curve imaging for exoplanet detection with deep learning: a conceptual trialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisExoplanetasImageamento de curvas de luzDeep learningRedes neurais convolucionaisExoplanetsLight curve imagingDeep learningConvolutional neural networksCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2024ORIGINAL2024_dis_pcfsilvafilho.pdf2024_dis_pcfsilvafilho.pdfapplication/pdf9421073http://repositorio.ufc.br/bitstream/riufc/76416/7/2024_dis_pcfsilvafilho.pdf419950531af17aa6a5020b60cf184947MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/76416/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58riufc/764162024-03-13 16:19:15.304oai:repositorio.ufc.br:riufc/76416Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-03-13T19:19:15Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Light curve imaging for exoplanet detection with deep learning: a conceptual trial
title Light curve imaging for exoplanet detection with deep learning: a conceptual trial
spellingShingle Light curve imaging for exoplanet detection with deep learning: a conceptual trial
Silva Filho, Paulo Cleber Farias da
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
Exoplanetas
Imageamento de curvas de luz
Deep learning
Redes neurais convolucionais
Exoplanets
Light curve imaging
Deep learning
Convolutional neural networks
title_short Light curve imaging for exoplanet detection with deep learning: a conceptual trial
title_full Light curve imaging for exoplanet detection with deep learning: a conceptual trial
title_fullStr Light curve imaging for exoplanet detection with deep learning: a conceptual trial
title_full_unstemmed Light curve imaging for exoplanet detection with deep learning: a conceptual trial
title_sort Light curve imaging for exoplanet detection with deep learning: a conceptual trial
author Silva Filho, Paulo Cleber Farias da
author_facet Silva Filho, Paulo Cleber Farias da
author_role author
dc.contributor.co-advisor.none.fl_str_mv Reis, Saulo Davi Soares e
dc.contributor.author.fl_str_mv Silva Filho, Paulo Cleber Farias da
dc.contributor.advisor1.fl_str_mv Freitas, Daniel Brito de
contributor_str_mv Freitas, Daniel Brito de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
Exoplanetas
Imageamento de curvas de luz
Deep learning
Redes neurais convolucionais
Exoplanets
Light curve imaging
Deep learning
Convolutional neural networks
dc.subject.ptbr.pt_BR.fl_str_mv Exoplanetas
Imageamento de curvas de luz
Deep learning
Redes neurais convolucionais
dc.subject.en.pt_BR.fl_str_mv Exoplanets
Light curve imaging
Deep learning
Convolutional neural networks
description The ever-growing number of space missions has made manual searching for exoplanet candidates infeasible due to the increasing volume of data. Consequently, the astrophysics community has extensively employed machine learning methods not only to handle the sheer amount of available data but also to enhance the sensitivity of detections concerning the signal noise inherent in relevant observational cases. This work builds upon and refines a previous review study, also presenting a conceptual trial for an alternative method to those previously discussed in the literature for classifying potential exoplanet signals using deep learning. We developed, trained, and evaluated Convolutional Neural Network (CNN) models to analyze light curves from the Kepler space mission, allowing inference on whether a given signal refers to an exoplanet or not. The distinction of this work lies in the imaging of these light curves before they are passed to the CNNs, which practically increases the number of dimensions available for analysis and enables the use of powerful and successful computer vision techniques for classification problems. Our best model ranks plausible planet signals higher than false-positive signals 97.22% of the time in our test dataset and demonstrates promising performance on entirely new data from other datasets. Our best model also shows a moderate capacity to generalize what it learned with data from other space missions, such as K2 and TESS. A good performance on entirely new data is a critical characteristic for upcoming space missions such as PLATO, and is work in progress at time of writing. Additionally, we provide new perspectives on how this imaging method can be further explored and tested in future works.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-03-06T19:44:24Z
dc.date.available.fl_str_mv 2024-03-06T19:44:24Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA FILHO, P. C. F. Light curve imaging for exoplanet detection with deep learning: a conceptual trial. 2024. Dissertação (Mestrado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/76416
identifier_str_mv SILVA FILHO, P. C. F. Light curve imaging for exoplanet detection with deep learning: a conceptual trial. 2024. Dissertação (Mestrado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/76416
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/76416/7/2024_dis_pcfsilvafilho.pdf
http://repositorio.ufc.br/bitstream/riufc/76416/8/license.txt
bitstream.checksum.fl_str_mv 419950531af17aa6a5020b60cf184947
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793041153196032