A comprehensive benchmark for single image deraining networks

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Araujo, Iago Breno Alves do Carmo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/
Resumo: Computer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions.
id USP_e7f0f7fea3e66f79b8b89de21c717546
oai_identifier_str oai:teses.usp.br:tde-20082025-192226
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling A comprehensive benchmark for single image deraining networksUma análise compreensiva de benchmark para redes deraining networksConvolutional neural networksDeep learningDeep learningDerainingDerainingMachine learningMachine learningRedes neurais convolucionaisComputer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions.não disponívelBiblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesAraujo, Iago Breno Alves do Carmo2019-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-21T09:06:02Zoai:teses.usp.br:tde-20082025-192226Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-21T09:06:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A comprehensive benchmark for single image deraining networks
Uma análise compreensiva de benchmark para redes deraining networks
title A comprehensive benchmark for single image deraining networks
spellingShingle A comprehensive benchmark for single image deraining networks
Araujo, Iago Breno Alves do Carmo
Convolutional neural networks
Deep learning
Deep learning
Deraining
Deraining
Machine learning
Machine learning
Redes neurais convolucionais
title_short A comprehensive benchmark for single image deraining networks
title_full A comprehensive benchmark for single image deraining networks
title_fullStr A comprehensive benchmark for single image deraining networks
title_full_unstemmed A comprehensive benchmark for single image deraining networks
title_sort A comprehensive benchmark for single image deraining networks
author Araujo, Iago Breno Alves do Carmo
author_facet Araujo, Iago Breno Alves do Carmo
author_role author
dc.contributor.none.fl_str_mv Cesar Junior, Roberto Marcondes
dc.contributor.author.fl_str_mv Araujo, Iago Breno Alves do Carmo
dc.subject.por.fl_str_mv Convolutional neural networks
Deep learning
Deep learning
Deraining
Deraining
Machine learning
Machine learning
Redes neurais convolucionais
topic Convolutional neural networks
Deep learning
Deep learning
Deraining
Deraining
Machine learning
Machine learning
Redes neurais convolucionais
description Computer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370487116169216