On musielak-orlicz function spaces and applications to information geometry
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/67158 |
Resumo: | In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence. |
| id |
UFC-7_62467eddf92a9aa95f7e670e0cd4a5a1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/67158 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Vigelis, Rui FacundoCavalcante, Charles Casimiro2022-07-18T14:03:16Z2022-07-18T14:03:16Z2011VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011.http://www.repositorio.ufc.br/handle/riufc/67158In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence.Nesta tese, os espaços de Musielak–Orlicz são aplicados à Geometria da Informação, em que φ-famílias de distribuições de probabilidade são construídas. Usando notação e terminologia uniformes, reunimos os resultados principais dos espaços de Musielak–Orlicz. Embora esses espaços tenham sido estudados extensivamente, algumas questões ainda não foram respondidas completamente. Nós nos focamos na extensão de alguns resultados e técnicas para funções de Musielak–Orlicz arbitrárias (não necessariamente finitas). Em algumas dessas extensões, usamos fórmulas mais gerais para a componente contínua em ordem e a componente singular de funcionais lineares limitados. Também encontramos condições necessárias e suficientes para a suavidade da norma de Orlicz, para funções de Musielak–Orlicz arbitrárias. Numa φ-família, subconjuntos de espaços de Musielak–Orlicz são usados como conjuntos de coordenadas. As φ-famílias são obtidas a partir de uma generalização das famílias exponenciais. A função exponencial encontrada nas famílias exponenciais é substituída por uma φ-função. Numa φ-família, o análogo da função geradora de cumulantes é uma função de normalização. Definimos a φ-divergência como a divergência de Bregman associada à função de normalização, fornecendo uma generalização da divergência de Kullback–Leibler.TeleinformáticaMatemática aplicadaFísica aplicadaOn musielak-orlicz function spaces and applications to information geometryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-82152http://repositorio.ufc.br/bitstream/riufc/67158/2/license.txtfb3ad2d23d9790966439580114baefafMD52ORIGINAL2011_tese_rfvigelis.pdf2011_tese_rfvigelis.pdfapplication/pdf1669768http://repositorio.ufc.br/bitstream/riufc/67158/1/2011_tese_rfvigelis.pdff94fe599e13006fba7e54a1031c4eaa2MD51riufc/671582022-07-18 11:03:16.979oai:repositorio.ufc.br:riufc/67158TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIAoKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbSBmb3JtYXRvIGltcHJlc3NvLCBlbGV0csO0bmljbyBvdSBlbSBxdWFscXVlciBvdXRybyBtZWlvLiBWb2PDqiBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgY29udmVydGVyIG8gYXJxdWl2byBkZXBvc2l0YWRvIGEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGNvbSBmaW5zIGRlIHByZXNlcnZhw6fDo28uIFZvY8OqKHMpIHRhbWLDqW0gY29uY29yZGEobSkgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3RlIGRlcMOzc2l0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlL291IHByZXNlcnZhw6fDo28uIFZvY8OqIGRlY2xhcmEgcXVlIGEgYXByZXNlbnRhw6fDo28gZG8gc2V1IHRyYWJhbGhvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqKHMpIHBvZGUobSkgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBvdXRyYSBwZXNzb2Egb3UgaW5zdGl0dWnDp8Ojby4gQ2FzbyBvIGRvY3VtZW50byBhIHNlciBkZXBvc2l0YWRvIGNvbnRlbmhhIG1hdGVyaWFsIHBhcmEgbyBxdWFsIHZvY8OqKHMpIG7Do28gZGV0w6ltIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBkZSBhdXRvcmFpcywgdm9jw6oocykgZGVjbGFyYShtKSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EgZSBxdWUgb3MgbWF0ZXJpYWlzIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gCk8gcmVwb3NpdMOzcmlvIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvIHNldShzKSBub21lKHMpIGNvbW8gYXV0b3IoZXMpIG91IHRpdHVsYXIoZXMpIGRvIGRpcmVpdG8gZGUgYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-07-18T14:03:16Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
On musielak-orlicz function spaces and applications to information geometry |
| title |
On musielak-orlicz function spaces and applications to information geometry |
| spellingShingle |
On musielak-orlicz function spaces and applications to information geometry Vigelis, Rui Facundo Teleinformática Matemática aplicada Física aplicada |
| title_short |
On musielak-orlicz function spaces and applications to information geometry |
| title_full |
On musielak-orlicz function spaces and applications to information geometry |
| title_fullStr |
On musielak-orlicz function spaces and applications to information geometry |
| title_full_unstemmed |
On musielak-orlicz function spaces and applications to information geometry |
| title_sort |
On musielak-orlicz function spaces and applications to information geometry |
| author |
Vigelis, Rui Facundo |
| author_facet |
Vigelis, Rui Facundo |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Vigelis, Rui Facundo |
| dc.contributor.advisor1.fl_str_mv |
Cavalcante, Charles Casimiro |
| contributor_str_mv |
Cavalcante, Charles Casimiro |
| dc.subject.por.fl_str_mv |
Teleinformática Matemática aplicada Física aplicada |
| topic |
Teleinformática Matemática aplicada Física aplicada |
| description |
In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence. |
| publishDate |
2011 |
| dc.date.issued.fl_str_mv |
2011 |
| dc.date.accessioned.fl_str_mv |
2022-07-18T14:03:16Z |
| dc.date.available.fl_str_mv |
2022-07-18T14:03:16Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/67158 |
| identifier_str_mv |
VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011. |
| url |
http://www.repositorio.ufc.br/handle/riufc/67158 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/67158/2/license.txt http://repositorio.ufc.br/bitstream/riufc/67158/1/2011_tese_rfvigelis.pdf |
| bitstream.checksum.fl_str_mv |
fb3ad2d23d9790966439580114baefaf f94fe599e13006fba7e54a1031c4eaa2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793240453939200 |