On musielak-orlicz function spaces and applications to information geometry

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Vigelis, Rui Facundo
Orientador(a): Cavalcante, Charles Casimiro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/67158
Resumo: In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence.
id UFC-7_62467eddf92a9aa95f7e670e0cd4a5a1
oai_identifier_str oai:repositorio.ufc.br:riufc/67158
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Vigelis, Rui FacundoCavalcante, Charles Casimiro2022-07-18T14:03:16Z2022-07-18T14:03:16Z2011VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011.http://www.repositorio.ufc.br/handle/riufc/67158In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence.Nesta tese, os espaços de Musielak–Orlicz são aplicados à Geometria da Informação, em que φ-famílias de distribuições de probabilidade são construídas. Usando notação e terminologia uniformes, reunimos os resultados principais dos espaços de Musielak–Orlicz. Embora esses espaços tenham sido estudados extensivamente, algumas questões ainda não foram respondidas completamente. Nós nos focamos na extensão de alguns resultados e técnicas para funções de Musielak–Orlicz arbitrárias (não necessariamente finitas). Em algumas dessas extensões, usamos fórmulas mais gerais para a componente contínua em ordem e a componente singular de funcionais lineares limitados. Também encontramos condições necessárias e suficientes para a suavidade da norma de Orlicz, para funções de Musielak–Orlicz arbitrárias. Numa φ-família, subconjuntos de espaços de Musielak–Orlicz são usados como conjuntos de coordenadas. As φ-famílias são obtidas a partir de uma generalização das famílias exponenciais. A função exponencial encontrada nas famílias exponenciais é substituída por uma φ-função. Numa φ-família, o análogo da função geradora de cumulantes é uma função de normalização. Definimos a φ-divergência como a divergência de Bregman associada à função de normalização, fornecendo uma generalização da divergência de Kullback–Leibler.TeleinformáticaMatemática aplicadaFísica aplicadaOn musielak-orlicz function spaces and applications to information geometryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-82152http://repositorio.ufc.br/bitstream/riufc/67158/2/license.txtfb3ad2d23d9790966439580114baefafMD52ORIGINAL2011_tese_rfvigelis.pdf2011_tese_rfvigelis.pdfapplication/pdf1669768http://repositorio.ufc.br/bitstream/riufc/67158/1/2011_tese_rfvigelis.pdff94fe599e13006fba7e54a1031c4eaa2MD51riufc/671582022-07-18 11:03:16.979oai:repositorio.ufc.br:riufc/67158TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIAoKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbSBmb3JtYXRvIGltcHJlc3NvLCBlbGV0csO0bmljbyBvdSBlbSBxdWFscXVlciBvdXRybyBtZWlvLiBWb2PDqiBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgY29udmVydGVyIG8gYXJxdWl2byBkZXBvc2l0YWRvIGEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGNvbSBmaW5zIGRlIHByZXNlcnZhw6fDo28uIFZvY8OqKHMpIHRhbWLDqW0gY29uY29yZGEobSkgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3RlIGRlcMOzc2l0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlL291IHByZXNlcnZhw6fDo28uIFZvY8OqIGRlY2xhcmEgcXVlIGEgYXByZXNlbnRhw6fDo28gZG8gc2V1IHRyYWJhbGhvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqKHMpIHBvZGUobSkgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBvdXRyYSBwZXNzb2Egb3UgaW5zdGl0dWnDp8Ojby4gQ2FzbyBvIGRvY3VtZW50byBhIHNlciBkZXBvc2l0YWRvIGNvbnRlbmhhIG1hdGVyaWFsIHBhcmEgbyBxdWFsIHZvY8OqKHMpIG7Do28gZGV0w6ltIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBkZSBhdXRvcmFpcywgdm9jw6oocykgZGVjbGFyYShtKSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EgZSBxdWUgb3MgbWF0ZXJpYWlzIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gCk8gcmVwb3NpdMOzcmlvIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvIHNldShzKSBub21lKHMpIGNvbW8gYXV0b3IoZXMpIG91IHRpdHVsYXIoZXMpIGRvIGRpcmVpdG8gZGUgYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-07-18T14:03:16Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv On musielak-orlicz function spaces and applications to information geometry
title On musielak-orlicz function spaces and applications to information geometry
spellingShingle On musielak-orlicz function spaces and applications to information geometry
Vigelis, Rui Facundo
Teleinformática
Matemática aplicada
Física aplicada
title_short On musielak-orlicz function spaces and applications to information geometry
title_full On musielak-orlicz function spaces and applications to information geometry
title_fullStr On musielak-orlicz function spaces and applications to information geometry
title_full_unstemmed On musielak-orlicz function spaces and applications to information geometry
title_sort On musielak-orlicz function spaces and applications to information geometry
author Vigelis, Rui Facundo
author_facet Vigelis, Rui Facundo
author_role author
dc.contributor.author.fl_str_mv Vigelis, Rui Facundo
dc.contributor.advisor1.fl_str_mv Cavalcante, Charles Casimiro
contributor_str_mv Cavalcante, Charles Casimiro
dc.subject.por.fl_str_mv Teleinformática
Matemática aplicada
Física aplicada
topic Teleinformática
Matemática aplicada
Física aplicada
description In this thesis, Musielak–Orlicz spaces are applied to Information Geometry, where φ-families of probability distributions are constructed. Using unified notation and terminology, we collected some standard results of Musielak–Orlicz spaces. Although these spaces have been studied extensively, some questions were not answered completely. We have focused on the extension of some results and techniques to arbitrary (not necessarily finite) Musielak–Orlicz functions. In some extensions, we made use of more general formulas for the order continuous and singular components of bounded linear functionals. We found necessary and sufficient conditions for the smoothness of the Orlicz norm for arbitrary Musielak–Orlicz functions. In a φ-family, subsets of Musielak–Orlicz spaces are used as coordinate sets. We obtained φ-families by a generalization of exponential families. The exponential function found in exponential families is replaced by a φ-function. In a φ-family, the analogous of the cumulant-generating functional is a normalizing function. We defined the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence.
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2022-07-18T14:03:16Z
dc.date.available.fl_str_mv 2022-07-18T14:03:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/67158
identifier_str_mv VIGELIS, R. F. On musielak-orlicz function spaces and applications to information geometry. 2011 . 112 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza-CE, 2011.
url http://www.repositorio.ufc.br/handle/riufc/67158
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/67158/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/67158/1/2011_tese_rfvigelis.pdf
bitstream.checksum.fl_str_mv fb3ad2d23d9790966439580114baefaf
f94fe599e13006fba7e54a1031c4eaa2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793240453939200