Variedades quasi-Einstein compactas com bordo

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Sousa, Tiago Gadelha de
Orientador(a): Ribeiro Júnior, Ernani de Sousa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/59794
Resumo: The objective of this work is to study compact quasi-Einstein manifolds with edge. In the first part, we will provide edge estimates and geometric obstruction results. We establish a sharp upper estimate for the edge area of ​​a compact quasi-Einstein manifold with a connected edge assuming a lower bound of the Ricci curvature of the edge. With equality being valid if, and only if, the boundary of the manifold is isometric to a sphere. The result is still valid in the three-dimensional case without the condition of limiting the Ricci curvature of the border. Considering a compact quasi-Einstein manifold with (possibly disconnected) edge and constant scalar curvature, we were also able to obtain a characterization result in terms of surface gravity of the edge components. For the case where the edge is connected, a sharp geometric inequality ensues from this result involving the edge area and the volume of such manifolds, which can also be seen as a result of obstruction. Furthermore, equality occurs if, and only if, the manifold is isometric, unless scaling, to the hemisphere. We conclude the first part of this work by presenting an upper edge estimate for compact quasi-Einstein manifolds with a (possibly disconnected) edge in terms of the Brown-York mass. In the second part of this work, we provide a Böchner-type formula for quasi-Einstein manifolds with a dimension greater than or equal to 3 which allows us to obtain stiffness results assuming a pinched condition involving the traceless Ricci tensor. Furthermore, considering the Yamabe invariant (or the Yamabe constant), which is an important tool in prescribed metric problems, we obtain an integral curvature estimate in terms of the Yamabe constant for 4-dimensional compact quasi-Einstein manifolds with boundary and constant scalar curvature.
id UFC-7_646c1f4bea9326b5bc3e589a3bbe81bc
oai_identifier_str oai:repositorio.ufc.br:riufc/59794
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Sousa, Tiago Gadelha deRibeiro Júnior, Ernani de Sousa2021-08-01T00:39:48Z2021-08-01T00:39:48Z2021-06-04SOUSA, Tiago Gadelha. Variedades quasi-Einstein compactas com bordo. 2021. 63 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/59794The objective of this work is to study compact quasi-Einstein manifolds with edge. In the first part, we will provide edge estimates and geometric obstruction results. We establish a sharp upper estimate for the edge area of ​​a compact quasi-Einstein manifold with a connected edge assuming a lower bound of the Ricci curvature of the edge. With equality being valid if, and only if, the boundary of the manifold is isometric to a sphere. The result is still valid in the three-dimensional case without the condition of limiting the Ricci curvature of the border. Considering a compact quasi-Einstein manifold with (possibly disconnected) edge and constant scalar curvature, we were also able to obtain a characterization result in terms of surface gravity of the edge components. For the case where the edge is connected, a sharp geometric inequality ensues from this result involving the edge area and the volume of such manifolds, which can also be seen as a result of obstruction. Furthermore, equality occurs if, and only if, the manifold is isometric, unless scaling, to the hemisphere. We conclude the first part of this work by presenting an upper edge estimate for compact quasi-Einstein manifolds with a (possibly disconnected) edge in terms of the Brown-York mass. In the second part of this work, we provide a Böchner-type formula for quasi-Einstein manifolds with a dimension greater than or equal to 3 which allows us to obtain stiffness results assuming a pinched condition involving the traceless Ricci tensor. Furthermore, considering the Yamabe invariant (or the Yamabe constant), which is an important tool in prescribed metric problems, we obtain an integral curvature estimate in terms of the Yamabe constant for 4-dimensional compact quasi-Einstein manifolds with boundary and constant scalar curvature.O objetivo deste trabalho é estudar variedades quasi-Einstein compactas com bordo. Na primeira parte, forneceremos estimativas de bordo e resultados de obstrução geométrica. Estabelecemos uma estimativa superior sharp para a área do bordo de uma variedade quasi-Einstein compacta com bordo conexo assumindo uma limitação inferior da curvatura de Ricci do bordo. Com igualdade valendo se, e somente se, o bordo da variedade for isométrico a uma esfera. O resultado ainda é válido no caso tridimensional sem a condição de limitação da curvatura de Ricci do bordo. Considerando uma variedade quasi-Einstein compacta com bordo (possivelmente desconexo) e curvatura escalar constante, conseguimos também obter um resultado de caracterização em termos da gravidade da superfície das componentes do bordo. Para o caso em que o bordo é conexo, decorre desse resultado uma desigualdade geométrica sharp envolvendo a área do bordo e o volume de tais variedades, que também pode ser visto como um resultado de obstrução. Além disso, a igualdade ocorre se, e somente se, a variedade for isométrica, a menos de scaling, ao hemisfério. Finalizamos a primeira parte deste trabalho apresentando uma estimativa de bordo superior para variedades quasi-Einstein compactas com bordo (possivelmente desconexo) em termos da massa de Brown-York. Na segunda parte deste trabalho, fornecemos uma fórmula tipo Böchner para variedades quasi-Einstein de dimensão maior ou igual a 3 a qual nos permite obter resultados de rigidez assumindo uma condição pinçada envolvendo o tensor de Ricci sem traço. Além disso, considerando o invariante de Yamabe (ou a constante de Yamabe), que é uma importante ferramenta em problemas de métricas prescritas, obtemos uma estimativa de curvatura integral em termos da constante de Yamabe para variedades quasi-Einstein compactas de dimensão 4 com bordo e curvatura escalar constante.Variedades quasi-EinsteinEstimativas de bordoVariedades de EinsteinProduto warpedQuasi-Einstein manifoldsBoundary estimatesEinstein manifoldsWarped productVariedades quasi-Einstein compactas com bordoQuasi-Einstein compact varieties with boundaryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_tese_tgsousa.pdf2021_tese_tgsousa.pdftese tiago gadelhaapplication/pdf374944http://repositorio.ufc.br/bitstream/riufc/59794/3/2021_tese_tgsousa.pdf3ad0856f99bddb83b3c53f59dbb08d6aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/59794/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/597942021-11-30 15:12:51.79oai:repositorio.ufc.br:riufc/59794Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-11-30T18:12:51Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Variedades quasi-Einstein compactas com bordo
dc.title.en.pt_BR.fl_str_mv Quasi-Einstein compact varieties with boundary
title Variedades quasi-Einstein compactas com bordo
spellingShingle Variedades quasi-Einstein compactas com bordo
Sousa, Tiago Gadelha de
Variedades quasi-Einstein
Estimativas de bordo
Variedades de Einstein
Produto warped
Quasi-Einstein manifolds
Boundary estimates
Einstein manifolds
Warped product
title_short Variedades quasi-Einstein compactas com bordo
title_full Variedades quasi-Einstein compactas com bordo
title_fullStr Variedades quasi-Einstein compactas com bordo
title_full_unstemmed Variedades quasi-Einstein compactas com bordo
title_sort Variedades quasi-Einstein compactas com bordo
author Sousa, Tiago Gadelha de
author_facet Sousa, Tiago Gadelha de
author_role author
dc.contributor.author.fl_str_mv Sousa, Tiago Gadelha de
dc.contributor.advisor1.fl_str_mv Ribeiro Júnior, Ernani de Sousa
contributor_str_mv Ribeiro Júnior, Ernani de Sousa
dc.subject.por.fl_str_mv Variedades quasi-Einstein
Estimativas de bordo
Variedades de Einstein
Produto warped
Quasi-Einstein manifolds
Boundary estimates
Einstein manifolds
Warped product
topic Variedades quasi-Einstein
Estimativas de bordo
Variedades de Einstein
Produto warped
Quasi-Einstein manifolds
Boundary estimates
Einstein manifolds
Warped product
description The objective of this work is to study compact quasi-Einstein manifolds with edge. In the first part, we will provide edge estimates and geometric obstruction results. We establish a sharp upper estimate for the edge area of ​​a compact quasi-Einstein manifold with a connected edge assuming a lower bound of the Ricci curvature of the edge. With equality being valid if, and only if, the boundary of the manifold is isometric to a sphere. The result is still valid in the three-dimensional case without the condition of limiting the Ricci curvature of the border. Considering a compact quasi-Einstein manifold with (possibly disconnected) edge and constant scalar curvature, we were also able to obtain a characterization result in terms of surface gravity of the edge components. For the case where the edge is connected, a sharp geometric inequality ensues from this result involving the edge area and the volume of such manifolds, which can also be seen as a result of obstruction. Furthermore, equality occurs if, and only if, the manifold is isometric, unless scaling, to the hemisphere. We conclude the first part of this work by presenting an upper edge estimate for compact quasi-Einstein manifolds with a (possibly disconnected) edge in terms of the Brown-York mass. In the second part of this work, we provide a Böchner-type formula for quasi-Einstein manifolds with a dimension greater than or equal to 3 which allows us to obtain stiffness results assuming a pinched condition involving the traceless Ricci tensor. Furthermore, considering the Yamabe invariant (or the Yamabe constant), which is an important tool in prescribed metric problems, we obtain an integral curvature estimate in terms of the Yamabe constant for 4-dimensional compact quasi-Einstein manifolds with boundary and constant scalar curvature.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-08-01T00:39:48Z
dc.date.available.fl_str_mv 2021-08-01T00:39:48Z
dc.date.issued.fl_str_mv 2021-06-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, Tiago Gadelha. Variedades quasi-Einstein compactas com bordo. 2021. 63 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/59794
identifier_str_mv SOUSA, Tiago Gadelha. Variedades quasi-Einstein compactas com bordo. 2021. 63 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/59794
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/59794/3/2021_tese_tgsousa.pdf
http://repositorio.ufc.br/bitstream/riufc/59794/4/license.txt
bitstream.checksum.fl_str_mv 3ad0856f99bddb83b3c53f59dbb08d6a
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793131059150848