Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Marcos Ranieri da
Orientador(a): Ribeiro Junior, Ernani de Sousa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/21126
Resumo: The purpose of this work is to study quasi-Einstein manifolds and Miao-Tam critical metrics. In the first part, we will study the structure at infinity of a complete non-compact quasi-Einstein manifold. In particular, we show that if M is the basis of a warped product Ricci-flat then M is connected at infinity. When M is a quasi-Einstein manifold with λ < 0 there are examples showing that such a result is not true. In this case, we show that M is f -non-parabolic and, under a certain hypothesis on the scalar curvature, M has only one f -non-parabolic end. Furthermore, we obtain two estimates for the volume of the geodesic balls of M. Next, we show that a Bach-flat non-compact quasi-Einstein manifold with λ= 0 and positive Ricci curvature must be isometric to a warped product metric g = dt2+ψ2(t)gL, where gL is an Einstein metric. In the second part, we will study the critical metrics of the functional volume restricted to the set of metrics with constant scalar curvature and boundary prescribed metric on a compact manifold. We obtain a sharp upper bound for the area of the boundary of a Miao-Tam critical metric (M3;g) with non-negative scalar curvature. Moreover, we show that the equality holds if and only if (M3;g) is isometric to a geodesic ball in simply connected space form R3 or S3. Finally, we get a type-Bochner formula for a 3-dimensional Miao-Tam critical metric, which allows us to get the same rigid result provided that/ Ric/ ≤R6 .
id UFC-7_ccb5a3f6754488a7a712299deefc42ce
oai_identifier_str oai:repositorio.ufc.br:riufc/21126
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva, Marcos Ranieri daRibeiro Junior, Ernani de Sousa2016-11-21T13:51:06Z2016-11-21T13:51:06Z2016SILVA, Marcos Raineri da Silva.Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo. 2016. 69 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/21126The purpose of this work is to study quasi-Einstein manifolds and Miao-Tam critical metrics. In the first part, we will study the structure at infinity of a complete non-compact quasi-Einstein manifold. In particular, we show that if M is the basis of a warped product Ricci-flat then M is connected at infinity. When M is a quasi-Einstein manifold with λ < 0 there are examples showing that such a result is not true. In this case, we show that M is f -non-parabolic and, under a certain hypothesis on the scalar curvature, M has only one f -non-parabolic end. Furthermore, we obtain two estimates for the volume of the geodesic balls of M. Next, we show that a Bach-flat non-compact quasi-Einstein manifold with λ= 0 and positive Ricci curvature must be isometric to a warped product metric g = dt2+ψ2(t)gL, where gL is an Einstein metric. In the second part, we will study the critical metrics of the functional volume restricted to the set of metrics with constant scalar curvature and boundary prescribed metric on a compact manifold. We obtain a sharp upper bound for the area of the boundary of a Miao-Tam critical metric (M3;g) with non-negative scalar curvature. Moreover, we show that the equality holds if and only if (M3;g) is isometric to a geodesic ball in simply connected space form R3 or S3. Finally, we get a type-Bochner formula for a 3-dimensional Miao-Tam critical metric, which allows us to get the same rigid result provided that/ Ric/ ≤R6 .O objetivo do trabalho é estudar as variedades quasi-Einstein e métricas críticas de Miao-Tam. Na primeira parte, estudamos a estrutura no infinito de uma variedade quasi-Einstein completa e não-compacta. Em particular, mostramos que se M é a base de um produto warped Ricci-flat, então M é conexa no infinito. Quando M é uma variedade quasi-Einstein com λ < 0 existem exemplos que mostram que tal resultado não é verdadeiro. Neste caso, mostramos que M é f -não-parabólica e sobre uma determinada hipótese sobre a curvatura escalar, que M tem apenas um fim f-não-parabólico. Além disso, obtemos duas estimativas para o volume das bolas geodésicas de M. Em seguida, mostramos que variedades quasi-Einstein Bach-flat não-compactas com λ = 0 e curvatura de Ricci positiva são isométricas a uma métrica produto warped g = dt2+ψ2(t)gL, onde gL é uma métrica Einstein. Na segunda parte do trabalho, estudamos as métricas críticas do funcional volume restrito ao conjunto das métricas com curvatura escalar constante e métrica de bordo prescrita em uma variedade compacta. Obtemos uma estimativa superior sharp para a área do bordo de uma métrica crítica de Miao-Tam (M3;g) com curvatura escalar não-negativa. Além disso, vale a igualdade se, e somente se, (M3;g) for isométrica a uma bola geodésica em espaço forma simplesmente conexo R3 ou S3. Por último, obtemos uma fórmula tipo-Bochner para uma métrica crítica de Miao-Tam tridimensional, a qual nos permite obter o mesmo resultado de rigidez desde que / Ric/ ≤R6. .Produtos warped EinsteinMétricas críticasMétricas quasi-EinsteinVariedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordoComplete quasi-Einstein varieties and critical metrics of the functional volume in compact varieties with onboardinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_tese_mrsilva.pdf2016_tese_mrsilva.pdfapplication/pdf676064http://repositorio.ufc.br/bitstream/riufc/21126/1/2016_tese_mrsilva.pdfb3c50c90fe4265ade898b8c259d3882cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/21126/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/211262019-01-04 10:31:19.35oai:repositorio.ufc.br:riufc/21126Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T13:31:19Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
dc.title.en.pt_BR.fl_str_mv Complete quasi-Einstein varieties and critical metrics of the functional volume in compact varieties with onboard
title Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
spellingShingle Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
Silva, Marcos Ranieri da
Produtos warped Einstein
Métricas críticas
Métricas quasi-Einstein
title_short Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
title_full Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
title_fullStr Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
title_full_unstemmed Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
title_sort Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo
author Silva, Marcos Ranieri da
author_facet Silva, Marcos Ranieri da
author_role author
dc.contributor.author.fl_str_mv Silva, Marcos Ranieri da
dc.contributor.advisor1.fl_str_mv Ribeiro Junior, Ernani de Sousa
contributor_str_mv Ribeiro Junior, Ernani de Sousa
dc.subject.por.fl_str_mv Produtos warped Einstein
Métricas críticas
Métricas quasi-Einstein
topic Produtos warped Einstein
Métricas críticas
Métricas quasi-Einstein
description The purpose of this work is to study quasi-Einstein manifolds and Miao-Tam critical metrics. In the first part, we will study the structure at infinity of a complete non-compact quasi-Einstein manifold. In particular, we show that if M is the basis of a warped product Ricci-flat then M is connected at infinity. When M is a quasi-Einstein manifold with λ < 0 there are examples showing that such a result is not true. In this case, we show that M is f -non-parabolic and, under a certain hypothesis on the scalar curvature, M has only one f -non-parabolic end. Furthermore, we obtain two estimates for the volume of the geodesic balls of M. Next, we show that a Bach-flat non-compact quasi-Einstein manifold with λ= 0 and positive Ricci curvature must be isometric to a warped product metric g = dt2+ψ2(t)gL, where gL is an Einstein metric. In the second part, we will study the critical metrics of the functional volume restricted to the set of metrics with constant scalar curvature and boundary prescribed metric on a compact manifold. We obtain a sharp upper bound for the area of the boundary of a Miao-Tam critical metric (M3;g) with non-negative scalar curvature. Moreover, we show that the equality holds if and only if (M3;g) is isometric to a geodesic ball in simply connected space form R3 or S3. Finally, we get a type-Bochner formula for a 3-dimensional Miao-Tam critical metric, which allows us to get the same rigid result provided that/ Ric/ ≤R6 .
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-11-21T13:51:06Z
dc.date.available.fl_str_mv 2016-11-21T13:51:06Z
dc.date.issued.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Marcos Raineri da Silva.Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo. 2016. 69 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/21126
identifier_str_mv SILVA, Marcos Raineri da Silva.Variedades quasi-Einstein completas e métricas críticas do funcional volume em variedades compactas com bordo. 2016. 69 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/21126
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/21126/1/2016_tese_mrsilva.pdf
http://repositorio.ufc.br/bitstream/riufc/21126/2/license.txt
bitstream.checksum.fl_str_mv b3c50c90fe4265ade898b8c259d3882c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792960544964608