Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/81565 |
Resumo: | Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers. |
| id |
UFC-7_75b16126842dfd37a389531e4a4a58eb |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/81565 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Ribeiro, Vinícius Silva OsterneBombrun, LionelCavalcante, Charles Casimiro2025-07-15T01:04:24Z2025-07-15T01:04:24Z2025RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/81565Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers.O processamento de dados longitudinais é de grande interesse para diversos campos, incluindo aplicações biomédicas e agronômicas. Para abordar essa abordagem, diversos modelos mistos foram introduzidos na literatura (assim como modelos baseados em Equações de Estimativa Generalizadas, GEE), por exemplo. Esses modelos geralmente consideram a dependência intrassujeito, parametrizando a matriz de dispersão usando a decomposição de Cholesky modificada (MCD) ou a decomposição de Cholesky alternativa (ACD). Modelos tradicionais frequentemente assumem que os erros seguem uma distribuição normal. No entanto, essa suposição pode não ser válida para muitos casos práticos. Extensões baseadas nas distribuições de Student e Laplace foram propostas, mas podem ser muito restritivas devido à forma paramétrica fixa. Para abordar essas limitações, esta tese apresenta dois novos modelos de regressão que assumem que os erros são extraídos da família de misturas de escala de distribuições normais, considerando duas estruturas de decomposição diferentes para a matriz de dispersão. Desenvolvemos estimativas de máxima verossimilhança para esses modelos e as comparamos com modelos semelhantes que assumem distribuições diferentes, incluindo os modelos normal, t de Student e Laplace. Um estudo utilizando dados simulados demonstra que os modelos propostos são eficientes em comparação com modelos semelhantes e produzem resultados promissores para a previsão de novas observações. Além disso, a metodologia é validada em dados reais, demonstrando bom desempenho em termos de precisão de estimativa e robustez a outliers.Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDados longitudinaisMistura de escala de distribuição normalDecomposição de Cholesky modificadaLongitudinal DataScale Mixture of Normal distributionModified Cholesky decompositionCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/3849030124415093https://orcid.org/0000-0002-4198-4064http://lattes.cnpq.br/4751699166195344https://orcid.org/0000-0001-9036-39882025-05-12ORIGINAL2025_tese_vsoribeiro.pdf2025_tese_vsoribeiro.pdfTeseapplication/pdf1423347http://repositorio.ufc.br/bitstream/riufc/81565/3/2025_tese_vsoribeiro.pdfa43104eaafe96462c02f2f7c3eadec3eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81565/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/815652025-07-14 22:07:07.495oai:repositorio.ufc.br:riufc/81565Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-07-15T01:07:07Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| title |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| spellingShingle |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions Ribeiro, Vinícius Silva Osterne CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Dados longitudinais Mistura de escala de distribuição normal Decomposição de Cholesky modificada Longitudinal Data Scale Mixture of Normal distribution Modified Cholesky decomposition |
| title_short |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| title_full |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| title_fullStr |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| title_full_unstemmed |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| title_sort |
Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions |
| author |
Ribeiro, Vinícius Silva Osterne |
| author_facet |
Ribeiro, Vinícius Silva Osterne |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Bombrun, Lionel |
| dc.contributor.author.fl_str_mv |
Ribeiro, Vinícius Silva Osterne |
| dc.contributor.advisor1.fl_str_mv |
Cavalcante, Charles Casimiro |
| contributor_str_mv |
Cavalcante, Charles Casimiro |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Dados longitudinais Mistura de escala de distribuição normal Decomposição de Cholesky modificada Longitudinal Data Scale Mixture of Normal distribution Modified Cholesky decomposition |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Dados longitudinais Mistura de escala de distribuição normal Decomposição de Cholesky modificada |
| dc.subject.en.pt_BR.fl_str_mv |
Longitudinal Data Scale Mixture of Normal distribution Modified Cholesky decomposition |
| description |
Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-07-15T01:04:24Z |
| dc.date.available.fl_str_mv |
2025-07-15T01:04:24Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/81565 |
| identifier_str_mv |
RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/81565 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/81565/3/2025_tese_vsoribeiro.pdf http://repositorio.ufc.br/bitstream/riufc/81565/4/license.txt |
| bitstream.checksum.fl_str_mv |
a43104eaafe96462c02f2f7c3eadec3e 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793153946419200 |