Exportação concluída — 

Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Ribeiro, Vinícius Silva Osterne
Orientador(a): Cavalcante, Charles Casimiro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/81565
Resumo: Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers.
id UFC-7_75b16126842dfd37a389531e4a4a58eb
oai_identifier_str oai:repositorio.ufc.br:riufc/81565
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Ribeiro, Vinícius Silva OsterneBombrun, LionelCavalcante, Charles Casimiro2025-07-15T01:04:24Z2025-07-15T01:04:24Z2025RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/81565Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers.O processamento de dados longitudinais é de grande interesse para diversos campos, incluindo aplicações biomédicas e agronômicas. Para abordar essa abordagem, diversos modelos mistos foram introduzidos na literatura (assim como modelos baseados em Equações de Estimativa Generalizadas, GEE), por exemplo. Esses modelos geralmente consideram a dependência intrassujeito, parametrizando a matriz de dispersão usando a decomposição de Cholesky modificada (MCD) ou a decomposição de Cholesky alternativa (ACD). Modelos tradicionais frequentemente assumem que os erros seguem uma distribuição normal. No entanto, essa suposição pode não ser válida para muitos casos práticos. Extensões baseadas nas distribuições de Student e Laplace foram propostas, mas podem ser muito restritivas devido à forma paramétrica fixa. Para abordar essas limitações, esta tese apresenta dois novos modelos de regressão que assumem que os erros são extraídos da família de misturas de escala de distribuições normais, considerando duas estruturas de decomposição diferentes para a matriz de dispersão. Desenvolvemos estimativas de máxima verossimilhança para esses modelos e as comparamos com modelos semelhantes que assumem distribuições diferentes, incluindo os modelos normal, t de Student e Laplace. Um estudo utilizando dados simulados demonstra que os modelos propostos são eficientes em comparação com modelos semelhantes e produzem resultados promissores para a previsão de novas observações. Além disso, a metodologia é validada em dados reais, demonstrando bom desempenho em termos de precisão de estimativa e robustez a outliers.Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDados longitudinaisMistura de escala de distribuição normalDecomposição de Cholesky modificadaLongitudinal DataScale Mixture of Normal distributionModified Cholesky decompositionCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/3849030124415093https://orcid.org/0000-0002-4198-4064http://lattes.cnpq.br/4751699166195344https://orcid.org/0000-0001-9036-39882025-05-12ORIGINAL2025_tese_vsoribeiro.pdf2025_tese_vsoribeiro.pdfTeseapplication/pdf1423347http://repositorio.ufc.br/bitstream/riufc/81565/3/2025_tese_vsoribeiro.pdfa43104eaafe96462c02f2f7c3eadec3eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81565/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/815652025-07-14 22:07:07.495oai:repositorio.ufc.br:riufc/81565Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-07-15T01:07:07Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
title Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
spellingShingle Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
Ribeiro, Vinícius Silva Osterne
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Dados longitudinais
Mistura de escala de distribuição normal
Decomposição de Cholesky modificada
Longitudinal Data
Scale Mixture of Normal distribution
Modified Cholesky decomposition
title_short Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
title_full Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
title_fullStr Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
title_full_unstemmed Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
title_sort Joint modeling approach with cholesky decomposition using the scale mixtures of normal distributions
author Ribeiro, Vinícius Silva Osterne
author_facet Ribeiro, Vinícius Silva Osterne
author_role author
dc.contributor.co-advisor.none.fl_str_mv Bombrun, Lionel
dc.contributor.author.fl_str_mv Ribeiro, Vinícius Silva Osterne
dc.contributor.advisor1.fl_str_mv Cavalcante, Charles Casimiro
contributor_str_mv Cavalcante, Charles Casimiro
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Dados longitudinais
Mistura de escala de distribuição normal
Decomposição de Cholesky modificada
Longitudinal Data
Scale Mixture of Normal distribution
Modified Cholesky decomposition
dc.subject.ptbr.pt_BR.fl_str_mv Dados longitudinais
Mistura de escala de distribuição normal
Decomposição de Cholesky modificada
dc.subject.en.pt_BR.fl_str_mv Longitudinal Data
Scale Mixture of Normal distribution
Modified Cholesky decomposition
description Longitudinal data processing is of significant interest for several fields, includ-ing biomedical and agronomic applications. To address this approach, severalmixed models have been introduced in the literature (as well as models basedon Generalized Estimating Equations, GEE), for example. These models usu-ally consider within-subject dependence by parameterizing the scatter matrixusing the modified Cholesky decomposition (MCD) or the alternative Choleskydecomposition (ACD). Traditional models often assume that errors follow anormal distribution. However, this assumption may not be valid for many prac-tical cases. Extensions based on the Student-tand Laplace distributions havebeen proposed, but they might be too restrictive due to the fixed parametricform. To address these limitations, this thesis presents a two new regressionmodels that assum that the errors are drawn from the family of scale mixturesof normal distributions, considering two different decomposition structures forthe scatter matrix. We develop maximum likelihood estimates for these modelsand compare it to similar models that assume different distributions, includ-ing the normal, Student-t, and Laplace models. A study using simulated datademonstrates that the proposed models are efficient compared to similar modelsand produces promising results for predicting new observations. Furthermore,the methodology is validated on real data, demonstrating good performance interms of estimation accuracy and robustness to outliers.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-07-15T01:04:24Z
dc.date.available.fl_str_mv 2025-07-15T01:04:24Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/81565
identifier_str_mv RIBEIRO, Vinicius Silva Osterne. Joint modeling approach with cholesky decomposition using the scale mixtures of normal ditributions. 2025. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025.
url http://repositorio.ufc.br/handle/riufc/81565
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/81565/3/2025_tese_vsoribeiro.pdf
http://repositorio.ufc.br/bitstream/riufc/81565/4/license.txt
bitstream.checksum.fl_str_mv a43104eaafe96462c02f2f7c3eadec3e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793153946419200