Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, André Wagner de Barros
Orientador(a): Leão, Ruth Pastôra Saraiva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://repositorio.ufc.br/handle/riufc/74946
Resumo: Having the intermittent character and the increasing insertion of solar photovoltaic generation (PV) in the global power plant in recent years, it is imperative to develop even more accurate forecasting models for generation, allowing better planning of the PV plant operation and the entire electrical system. Artificial neural networks have become very popular for presenting promising assertive results in predicting photovoltaic generation and robust model performance. The main contribution of this work is the implementation and comparison of photovoltaic generation hourly forecasting models for a 164 MWp power plant, using types of Focused Time-Delay Neural Networks (FTDNN). Backpropagation, Adam Optimization, Particle Swarm Optimization (PSO), Chaotic PSO (CPSO), and PSO with Aging and Weakening Factor (PSO-AWF) were tested during the network training, although PSO-AWF was also used in the optimization of the architecture parameters for the FTDNN network. For performance comparison purposes, the following reference models were used: multilayer perceptron regression, linear regression, decision tree regression and persistence. Based on different statistical performance metrics, the FTDNN model with PSO-AWF training technique obtained the best result between the algorithms with manual parameter adjustment, with Root Mean Square Error (RMSE) 18.354 MW, Mean Absolute Error (MAE) 13.784 MW, Pearson Correlation Coefficient (R) 80.042 %, Normalized Root Mean Square Error (NRMSE) 14.155%, and Normalized Mean Absolute Error (NMAE) 10.631%. Among the models with automatic adjustment of parameters and forecast for 1h ahead, the FTDNN network that applies PSO-AWF for structuring and Adam for training performed better, with RMSE 18,542 MW, MAE 13,565 MW, R 79,631%, NRMSE 14,300% e NMAE 10,462%. In addition to the forecast for 1h ahead, models for forecasting 3h and 6h ahead (with and without hourly resolution) were also implemented, besides the analysis of the effect of changing the amount of input data and the cross-validation technique on a given automatic model. A small improvement in the result was observed, for the models that provide the forecast for 3h and 6h ahead with hourly resolution, with no improvement being identified for the other models tested with automatic adjustment of parameters.
id UFC-7_7ab5decf266a6142aa23091d6b06d2ae
oai_identifier_str oai:repositorio.ufc.br:riufc/74946
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva, André Wagner de BarrosBezerra, Erick CostaLeão, Ruth Pastôra Saraiva2023-11-10T14:26:51Z2023-11-10T14:26:51Z2023SILVA, A.W. de B. revisão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO. 2023. 82f. Dissertação (Mestrado em Engenharia) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/74946Having the intermittent character and the increasing insertion of solar photovoltaic generation (PV) in the global power plant in recent years, it is imperative to develop even more accurate forecasting models for generation, allowing better planning of the PV plant operation and the entire electrical system. Artificial neural networks have become very popular for presenting promising assertive results in predicting photovoltaic generation and robust model performance. The main contribution of this work is the implementation and comparison of photovoltaic generation hourly forecasting models for a 164 MWp power plant, using types of Focused Time-Delay Neural Networks (FTDNN). Backpropagation, Adam Optimization, Particle Swarm Optimization (PSO), Chaotic PSO (CPSO), and PSO with Aging and Weakening Factor (PSO-AWF) were tested during the network training, although PSO-AWF was also used in the optimization of the architecture parameters for the FTDNN network. For performance comparison purposes, the following reference models were used: multilayer perceptron regression, linear regression, decision tree regression and persistence. Based on different statistical performance metrics, the FTDNN model with PSO-AWF training technique obtained the best result between the algorithms with manual parameter adjustment, with Root Mean Square Error (RMSE) 18.354 MW, Mean Absolute Error (MAE) 13.784 MW, Pearson Correlation Coefficient (R) 80.042 %, Normalized Root Mean Square Error (NRMSE) 14.155%, and Normalized Mean Absolute Error (NMAE) 10.631%. Among the models with automatic adjustment of parameters and forecast for 1h ahead, the FTDNN network that applies PSO-AWF for structuring and Adam for training performed better, with RMSE 18,542 MW, MAE 13,565 MW, R 79,631%, NRMSE 14,300% e NMAE 10,462%. In addition to the forecast for 1h ahead, models for forecasting 3h and 6h ahead (with and without hourly resolution) were also implemented, besides the analysis of the effect of changing the amount of input data and the cross-validation technique on a given automatic model. A small improvement in the result was observed, for the models that provide the forecast for 3h and 6h ahead with hourly resolution, with no improvement being identified for the other models tested with automatic adjustment of parameters.Considerando a natureza intermitente e a crescente inserção da geração solar fotovoltaica na matriz energética mundial nos últimos anos, é imperioso o desenvolvimento de modelos de previsão de geração cada vez mais precisos, de modo a permitir um melhor planejamento da operação de usinas fotovoltaicas e do sistema elétrico como um todo. As redes neurais artificiais têm se tornado muito populares por apresentarem resultados promissores devido a assertividade na previsão da geração fotovoltaica e desempenho robusto do modelo. A principal contribuição deste trabalho está na implementação e comparação de modelos de previsão horária de geração fotovoltaica de uma usina de 164 MWp, utilizando redes do tipo Focused Time Delay Neural Network (FTDNN). Backpropagation, Adam, otimização por enxame de partículas (do inglês, PSO), PSO Caótico (do inglês, CPSO) e PSO com fator de envelhecimento e enfraquecimento (do inglês, PSO-AWF) foram testados no treinamento da rede, enquanto o último algoritmo também foi usado na otimização dos parâmetros da arquitetura da rede FTDNN. Para fins de comparação de desempenho, foram usados os modelos de referência regressão por perceptron multicamadas, regressão linear, regressão por árvore de decisão e persistência. Com base em diferentes métricas estatísticas de desempenho, o modelo FTDNN com técnica de treinamento PSO-AWF obteve o melhor resultado dentre os algoritmos com ajuste manual de parâmetros, com raiz do erro quadrático médio (do inglês, RMSE) 18,354 MW, erro médio absoluto (do inglês, MAE) 13,784 MW, coeficiente de correlação de Pearson (R) 80,042%, raiz do erro quadrático médio normalizado (do inglês, NRMSE) 14,155% e erro médio absoluto normalizado (do inglês, NMAE) 10,631%. Dentre os modelos com ajuste automático de parâmetros e previsão horária (para 1h à frente), a rede FTDNN que utiliza PSO-AWF para estruturação e Adam para treinamento obteve a melhor performance, com RMSE 18,542 MW, MAE 13,565 MW, R 79,631%, NRMSE 14,300% e NMAE 10,462%. Além da previsão para 1h à frente, implementou-se também o modelo com ajuste automático de parâmetros para previsão 3h e 6h à frente (com e sem resolução horária), além da análise do efeito da mudança da quantidade de dados de entrada e da técnica de validação cruzada sob um dos modelos automáticos aplicados. Observou-se uma pequena melhoria no resultado na previsão para 3h e 6h à frente com resolução horária, não sendo identificado ganho para os demais modelos testados com ajuste automático de parâmetros.Silva, A.W. de B. revisão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO. 2023. 82f. Dissertação (Mestrado em Engenharia) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSOSolar PV Generation Forecast Using Artificial Neural Network and PSO Algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisEnergia solarAprendizado de MáquinaGeração de energiaRede neural artificialAlgoritmos de EnxameUsinas FotovoltaicaForecastMachine LearningRegressionNeural NetworkSwarm AlgorithmsPV Generationinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://Iattes.cnpq.br/0793888388149756http://Iattes.cnpq.br/8551048513174462http://Iattes.cnpq.br/5170538042200193LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/74946/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2023_dis_awbsilva.pdf2023_dis_awbsilva.pdfapplication/pdf4005808http://repositorio.ufc.br/bitstream/riufc/74946/3/2023_dis_awbsilva.pdf5744e3d14570677263e0a8ac40917115MD53riufc/749462023-11-13 10:12:24.111oai:repositorio.ufc.br:riufc/74946Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-11-13T13:12:24Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
dc.title.en.pt_BR.fl_str_mv Solar PV Generation Forecast Using Artificial Neural Network and PSO Algorithm
title Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
spellingShingle Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
Silva, André Wagner de Barros
Energia solar
Aprendizado de Máquina
Geração de energia
Rede neural artificial
Algoritmos de Enxame
Usinas Fotovoltaica
Forecast
Machine Learning
Regression
Neural Network
Swarm Algorithms
PV Generation
title_short Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
title_full Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
title_fullStr Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
title_full_unstemmed Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
title_sort Previsão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO
author Silva, André Wagner de Barros
author_facet Silva, André Wagner de Barros
author_role author
dc.contributor.co-advisor.none.fl_str_mv Bezerra, Erick Costa
dc.contributor.author.fl_str_mv Silva, André Wagner de Barros
dc.contributor.advisor1.fl_str_mv Leão, Ruth Pastôra Saraiva
contributor_str_mv Leão, Ruth Pastôra Saraiva
dc.subject.ptbr.pt_BR.fl_str_mv Energia solar
Aprendizado de Máquina
Geração de energia
Rede neural artificial
Algoritmos de Enxame
Usinas Fotovoltaica
topic Energia solar
Aprendizado de Máquina
Geração de energia
Rede neural artificial
Algoritmos de Enxame
Usinas Fotovoltaica
Forecast
Machine Learning
Regression
Neural Network
Swarm Algorithms
PV Generation
dc.subject.en.pt_BR.fl_str_mv Forecast
Machine Learning
Regression
Neural Network
Swarm Algorithms
PV Generation
description Having the intermittent character and the increasing insertion of solar photovoltaic generation (PV) in the global power plant in recent years, it is imperative to develop even more accurate forecasting models for generation, allowing better planning of the PV plant operation and the entire electrical system. Artificial neural networks have become very popular for presenting promising assertive results in predicting photovoltaic generation and robust model performance. The main contribution of this work is the implementation and comparison of photovoltaic generation hourly forecasting models for a 164 MWp power plant, using types of Focused Time-Delay Neural Networks (FTDNN). Backpropagation, Adam Optimization, Particle Swarm Optimization (PSO), Chaotic PSO (CPSO), and PSO with Aging and Weakening Factor (PSO-AWF) were tested during the network training, although PSO-AWF was also used in the optimization of the architecture parameters for the FTDNN network. For performance comparison purposes, the following reference models were used: multilayer perceptron regression, linear regression, decision tree regression and persistence. Based on different statistical performance metrics, the FTDNN model with PSO-AWF training technique obtained the best result between the algorithms with manual parameter adjustment, with Root Mean Square Error (RMSE) 18.354 MW, Mean Absolute Error (MAE) 13.784 MW, Pearson Correlation Coefficient (R) 80.042 %, Normalized Root Mean Square Error (NRMSE) 14.155%, and Normalized Mean Absolute Error (NMAE) 10.631%. Among the models with automatic adjustment of parameters and forecast for 1h ahead, the FTDNN network that applies PSO-AWF for structuring and Adam for training performed better, with RMSE 18,542 MW, MAE 13,565 MW, R 79,631%, NRMSE 14,300% e NMAE 10,462%. In addition to the forecast for 1h ahead, models for forecasting 3h and 6h ahead (with and without hourly resolution) were also implemented, besides the analysis of the effect of changing the amount of input data and the cross-validation technique on a given automatic model. A small improvement in the result was observed, for the models that provide the forecast for 3h and 6h ahead with hourly resolution, with no improvement being identified for the other models tested with automatic adjustment of parameters.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-10T14:26:51Z
dc.date.available.fl_str_mv 2023-11-10T14:26:51Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, A.W. de B. revisão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO. 2023. 82f. Dissertação (Mestrado em Engenharia) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/74946
identifier_str_mv SILVA, A.W. de B. revisão de Geração de Usina Solar Fotovoltaica Utilizando Rede Neural Artificial e Algoritmo PSO. 2023. 82f. Dissertação (Mestrado em Engenharia) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
url http://repositorio.ufc.br/handle/riufc/74946
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/74946/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/74946/3/2023_dis_awbsilva.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
5744e3d14570677263e0a8ac40917115
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793152038010880