SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Rocha Neto, Ajalmar Rêgo da
Orientador(a): Cortez, Paulo César
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/15977
Resumo: This dissertation presents the results obtained from a computer-aided medical diagnostic system implemented through statistical and neural pattern classifiers. The Intelligent System for Diagnosis of Pathologies of the Vertebral Column (SINPATCO) has a modular architecture and is composed of three subsystems, namely: graphical interface, classification of pathology, and knowledge extraction. The graphical interface module allows a friendly man-machine interaction with the physician. The pathology classification module is implemented through difierent algorithms, such as linear and quadratic discriminants, Naive Bayes classifier, K Nearest Neighbors (KNN) classifier, Multilayer Perceptron (MLP) network, Self-Organizing Map (SOM) network, ang Generalized Regression network (GRNN). The knowledge extraction module is responsible for rule extraction from trained neural network based classifiers, in order to elucidate the neural-based diagnostic to the orthopedist. In particular, the pathology classification module of the SINPATCO platform uses recently proposed biomechanical attributes to categorize a patient into one out of three classes: normal subjects, subjects with spondilolistesis, and subjects with disk hernia. All the aforementioned classifiers are evaluated with respect their pathology recognition rate, number of false positive cases, number of false negative cases and sensitivity to outliers. The contribution of this work is manifold. Starting from the fact that it is probably the first to use (within the orthopaedic medicine) a recently proposed set of biomechanical measurements for the design of classifiers, this work also evaluates several pattern classifiers in the diagnosis of patologies of the vertebral column, and allows knowledge extraction from the trained classifiers in order to elucidate the obtained diagnostic to the physician. To the best of our knowledge, the combination of these three contributions makes the SINPATCO platform an innovative computer-aid tool for the orthopedist, facilitating the work of these professionals. Despite the fact that the SINPATCO platform can serve as a computer-aided diagnostic tool in the orthopedic medicine, it can also be used by non-expert clinicians, in order to minimize the lack of orthopedists in remote regions, speeding up the treatment and the transferring of patients to more developed centers.
id UFC-7_7e84e7b41c1ab20a3db764f1846de465
oai_identifier_str oai:repositorio.ufc.br:riufc/15977
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rocha Neto, Ajalmar Rêgo daBarreto, Guilherme de AlencarCortez, Paulo César2016-04-01T17:48:57Z2016-04-01T17:48:57Z2006ROCHA NETO, A. R. SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral. 2006. 105 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.http://www.repositorio.ufc.br/handle/riufc/15977This dissertation presents the results obtained from a computer-aided medical diagnostic system implemented through statistical and neural pattern classifiers. The Intelligent System for Diagnosis of Pathologies of the Vertebral Column (SINPATCO) has a modular architecture and is composed of three subsystems, namely: graphical interface, classification of pathology, and knowledge extraction. The graphical interface module allows a friendly man-machine interaction with the physician. The pathology classification module is implemented through difierent algorithms, such as linear and quadratic discriminants, Naive Bayes classifier, K Nearest Neighbors (KNN) classifier, Multilayer Perceptron (MLP) network, Self-Organizing Map (SOM) network, ang Generalized Regression network (GRNN). The knowledge extraction module is responsible for rule extraction from trained neural network based classifiers, in order to elucidate the neural-based diagnostic to the orthopedist. In particular, the pathology classification module of the SINPATCO platform uses recently proposed biomechanical attributes to categorize a patient into one out of three classes: normal subjects, subjects with spondilolistesis, and subjects with disk hernia. All the aforementioned classifiers are evaluated with respect their pathology recognition rate, number of false positive cases, number of false negative cases and sensitivity to outliers. The contribution of this work is manifold. Starting from the fact that it is probably the first to use (within the orthopaedic medicine) a recently proposed set of biomechanical measurements for the design of classifiers, this work also evaluates several pattern classifiers in the diagnosis of patologies of the vertebral column, and allows knowledge extraction from the trained classifiers in order to elucidate the obtained diagnostic to the physician. To the best of our knowledge, the combination of these three contributions makes the SINPATCO platform an innovative computer-aid tool for the orthopedist, facilitating the work of these professionals. Despite the fact that the SINPATCO platform can serve as a computer-aided diagnostic tool in the orthopedic medicine, it can also be used by non-expert clinicians, in order to minimize the lack of orthopedists in remote regions, speeding up the treatment and the transferring of patients to more developed centers.Esta dissertação apresenta os resultados de um sistema de auxílio ao diagnóstico médico implementado através de classificadores estatísticos e neurais. O Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral (SINPATCO) é composto por três subsistemas, a saber: interface gráfica, classificação de patologias e extração de conhecimento. O módulo de interface gráfica permite uma interação amigável com o especialista médico. O módulo de classificação automática de patologias é implementado por diferentes algoritmos, tais como discriminantes linear e quadrático, Naive Bayes, K-Vizinhos mais Próximos (KNN), rede MLP, rede SOM e rede GRNN. O módulo de extra ção de conhecimento é responsável pela extração de regras proposicionais a partir dos classificadores treinados, a fim de elucidar para o médico ortopedista como o classificador chega ao diagnóstico final. Em particular, o módulo de classificação de patologias da plataforma SINPATCO utiliza atributos biomecânicos recentemente propostos para efetuar a categorização de um paciente em três classes: pacientes normais, pacientes com espondilolistese e pacientes com hérnia de disco. Os diversos classificadores supracitados são comparados com relação à taxa de acerto, número de falsos positivos, número de falsos negativos e sensibilidade a amostras discrepantes (outliers). As contribuições deste trabalho são variadas, indo desde do fato de ser provavelmente o primeiro a usar um conjunto recente de atributos biomecânicos para projeto de classificadores na área de medicina ortopédica, passando pelo estudo comparativo do desempenho de vários classificadores, até a extração de regras a partir dos classificadores com melhor desempenho para explicar o diagnóstico obtido ao médico, para posterior avaliação. Até onde se tem conhecimento, a combinação destas três contribuições torna o sistema SINPATCO inovador na área de ortopedia médica, servindo de auxílio na atividade de diagnóstico e facilitando o trabalho dos profissionais dessa área. Além servir como ferramenta de auxílio ao diagnóstico do médico especializado em ortopedia, o sistema SINPATCO pode ser usado por clínicos não-especialistas em ortopedia, a fim de minimizar a carência de ortopedistas em regiões remotas, agilizando o atendimento e o encaminhamento do paciente para centros mais desenvolvidos.TeleinformáticaTelemedicinaInteligência artificialRedes neurais (Computação)SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna VertebralIntelligent System for Diagnosis of Vertebral Columm Pathologiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2006_dis_arrochaneto.pdf2006_dis_arrochaneto.pdfapplication/pdf1288731http://repositorio.ufc.br/bitstream/riufc/15977/1/2006_dis_arrochaneto.pdfc797c37928a88bdc4cf6e4c7a109d9f1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/15977/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/159772021-07-02 11:45:03.545oai:repositorio.ufc.br:riufc/15977w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-07-02T14:45:03Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
dc.title.en.pt_BR.fl_str_mv Intelligent System for Diagnosis of Vertebral Columm Pathologies
title SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
spellingShingle SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
Rocha Neto, Ajalmar Rêgo da
Teleinformática
Telemedicina
Inteligência artificial
Redes neurais (Computação)
title_short SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
title_full SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
title_fullStr SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
title_full_unstemmed SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
title_sort SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
author Rocha Neto, Ajalmar Rêgo da
author_facet Rocha Neto, Ajalmar Rêgo da
author_role author
dc.contributor.co-advisor.none.fl_str_mv Barreto, Guilherme de Alencar
dc.contributor.author.fl_str_mv Rocha Neto, Ajalmar Rêgo da
dc.contributor.advisor1.fl_str_mv Cortez, Paulo César
contributor_str_mv Cortez, Paulo César
dc.subject.por.fl_str_mv Teleinformática
Telemedicina
Inteligência artificial
Redes neurais (Computação)
topic Teleinformática
Telemedicina
Inteligência artificial
Redes neurais (Computação)
description This dissertation presents the results obtained from a computer-aided medical diagnostic system implemented through statistical and neural pattern classifiers. The Intelligent System for Diagnosis of Pathologies of the Vertebral Column (SINPATCO) has a modular architecture and is composed of three subsystems, namely: graphical interface, classification of pathology, and knowledge extraction. The graphical interface module allows a friendly man-machine interaction with the physician. The pathology classification module is implemented through difierent algorithms, such as linear and quadratic discriminants, Naive Bayes classifier, K Nearest Neighbors (KNN) classifier, Multilayer Perceptron (MLP) network, Self-Organizing Map (SOM) network, ang Generalized Regression network (GRNN). The knowledge extraction module is responsible for rule extraction from trained neural network based classifiers, in order to elucidate the neural-based diagnostic to the orthopedist. In particular, the pathology classification module of the SINPATCO platform uses recently proposed biomechanical attributes to categorize a patient into one out of three classes: normal subjects, subjects with spondilolistesis, and subjects with disk hernia. All the aforementioned classifiers are evaluated with respect their pathology recognition rate, number of false positive cases, number of false negative cases and sensitivity to outliers. The contribution of this work is manifold. Starting from the fact that it is probably the first to use (within the orthopaedic medicine) a recently proposed set of biomechanical measurements for the design of classifiers, this work also evaluates several pattern classifiers in the diagnosis of patologies of the vertebral column, and allows knowledge extraction from the trained classifiers in order to elucidate the obtained diagnostic to the physician. To the best of our knowledge, the combination of these three contributions makes the SINPATCO platform an innovative computer-aid tool for the orthopedist, facilitating the work of these professionals. Despite the fact that the SINPATCO platform can serve as a computer-aided diagnostic tool in the orthopedic medicine, it can also be used by non-expert clinicians, in order to minimize the lack of orthopedists in remote regions, speeding up the treatment and the transferring of patients to more developed centers.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2016-04-01T17:48:57Z
dc.date.available.fl_str_mv 2016-04-01T17:48:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA NETO, A. R. SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral. 2006. 105 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/15977
identifier_str_mv ROCHA NETO, A. R. SINPATCO - Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral. 2006. 105 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.
url http://www.repositorio.ufc.br/handle/riufc/15977
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/15977/1/2006_dis_arrochaneto.pdf
http://repositorio.ufc.br/bitstream/riufc/15977/2/license.txt
bitstream.checksum.fl_str_mv c797c37928a88bdc4cf6e4c7a109d9f1
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793287323189248