Hypersurfaces with prescribed scalar curvature in geometric flows

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Farias, Rafael Rocha de
Orientador(a): Lira, Jorge Herbert Soares de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/72247
Resumo: We consider translators to the extrinsic fl ow defi nedby S α in R × hPn or in Pn × χR , where S is the extrinsic scalar curvature, α ∈ {1/2,1}, and n ≥ 3. We show that there exist rotational bowl-type and translating catenoid-type translators in P × χR . In our main existence results we exhibit a one-parameter family of explicit solutions when α = 1/2 in P × χR when P is Hadamard complete manifold with a rotationally symmetric metric. We discuss the variational nature of solitons, we fi nd a one-parameter family of null scalar curvature hypersurfaces when P × χR is Einstein, we use maximum principle to show that if a translating soliton is contained in a slab in I × hP and it is parabolic with respect to the L map then it is contained in a leaf P s = {s} × P and that if P × χR has constant sectional curvature and a translating soliton is parabolic with respect to L ζ map then it is not bounded from above.
id UFC-7_89945e8aa2ea6f2a33a885f56280f7d8
oai_identifier_str oai:repositorio.ufc.br:riufc/72247
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Farias, Rafael Rocha deLira, Jorge Herbert Soares de2023-05-12T14:03:22Z2023-05-12T14:03:22Z2023-02-23FARIAS, Rafael Rocha de. Hypersurfaces with prescribed scalar curvature in geometric flows. 2023. 76 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.http://www.repositorio.ufc.br/handle/riufc/72247We consider translators to the extrinsic fl ow defi nedby S α in R × hPn or in Pn × χR , where S is the extrinsic scalar curvature, α ∈ {1/2,1}, and n ≥ 3. We show that there exist rotational bowl-type and translating catenoid-type translators in P × χR . In our main existence results we exhibit a one-parameter family of explicit solutions when α = 1/2 in P × χR when P is Hadamard complete manifold with a rotationally symmetric metric. We discuss the variational nature of solitons, we fi nd a one-parameter family of null scalar curvature hypersurfaces when P × χR is Einstein, we use maximum principle to show that if a translating soliton is contained in a slab in I × hP and it is parabolic with respect to the L map then it is contained in a leaf P s = {s} × P and that if P × χR has constant sectional curvature and a translating soliton is parabolic with respect to L ζ map then it is not bounded from above.Consideramos translators ao fluxo extrínseco definido por S α em R × hPn ou em Pn × χR , onde S é a curvatura escalar extrínseca, α ∈ {1/2,1} e n ≥ 3. Mostramos que existem bowl-solitons rotacionais e translators tipo catenoide em P × χR . Em nosso principal resultado de existência exibimos uma família a um parâmetro de soluções explícitas quando α = 1/2 em P × χ R quando P é uma variedade de Hadamard com uma métrica rotacionalmente simétrica. Discutimos a natureza variacional dos solitons, encontramos uma família a um parâmetro de hipersuperfícies de curvatura escalar nula quando P × χ R é Einstein, usamos o princípio do máximo para mostrar que se um soliton da curvatura escalar está contido em um slab em I × h P e é parabólico com respeito ao operador L então ele está contido em uma folha P s = {s}× P e que se P × χ R possui curvatura seccional constante e um soliton pela curvatura escalar é parabólico com respeito ao operador Lζ então ele não é limitado por cima.Fluxo pela curvatura escalarTranslatorPrincípios do máximo (Matemática)Scalar curvature flowMaximum principleHypersurfaces with prescribed scalar curvature in geometric flowsHipersuperfícies com curvatura escalar prescrita em fluxos geométricosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/72247/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2023_tese_rrfarias.pdf2023_tese_rrfarias.pdfTese Rafael Fariasapplication/pdf652351http://repositorio.ufc.br/bitstream/riufc/72247/3/2023_tese_rrfarias.pdf59f9eb24c33b7497a46617d5c1254248MD53riufc/722472023-05-12 11:05:01.665oai:repositorio.ufc.br:riufc/72247Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-05-12T14:05:01Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Hypersurfaces with prescribed scalar curvature in geometric flows
dc.title.alternative.pt_BR.fl_str_mv Hipersuperfícies com curvatura escalar prescrita em fluxos geométricos
title Hypersurfaces with prescribed scalar curvature in geometric flows
spellingShingle Hypersurfaces with prescribed scalar curvature in geometric flows
Farias, Rafael Rocha de
Fluxo pela curvatura escalar
Translator
Princípios do máximo (Matemática)
Scalar curvature flow
Maximum principle
title_short Hypersurfaces with prescribed scalar curvature in geometric flows
title_full Hypersurfaces with prescribed scalar curvature in geometric flows
title_fullStr Hypersurfaces with prescribed scalar curvature in geometric flows
title_full_unstemmed Hypersurfaces with prescribed scalar curvature in geometric flows
title_sort Hypersurfaces with prescribed scalar curvature in geometric flows
author Farias, Rafael Rocha de
author_facet Farias, Rafael Rocha de
author_role author
dc.contributor.author.fl_str_mv Farias, Rafael Rocha de
dc.contributor.advisor1.fl_str_mv Lira, Jorge Herbert Soares de
contributor_str_mv Lira, Jorge Herbert Soares de
dc.subject.por.fl_str_mv Fluxo pela curvatura escalar
Translator
Princípios do máximo (Matemática)
Scalar curvature flow
Maximum principle
topic Fluxo pela curvatura escalar
Translator
Princípios do máximo (Matemática)
Scalar curvature flow
Maximum principle
description We consider translators to the extrinsic fl ow defi nedby S α in R × hPn or in Pn × χR , where S is the extrinsic scalar curvature, α ∈ {1/2,1}, and n ≥ 3. We show that there exist rotational bowl-type and translating catenoid-type translators in P × χR . In our main existence results we exhibit a one-parameter family of explicit solutions when α = 1/2 in P × χR when P is Hadamard complete manifold with a rotationally symmetric metric. We discuss the variational nature of solitons, we fi nd a one-parameter family of null scalar curvature hypersurfaces when P × χR is Einstein, we use maximum principle to show that if a translating soliton is contained in a slab in I × hP and it is parabolic with respect to the L map then it is contained in a leaf P s = {s} × P and that if P × χR has constant sectional curvature and a translating soliton is parabolic with respect to L ζ map then it is not bounded from above.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-12T14:03:22Z
dc.date.available.fl_str_mv 2023-05-12T14:03:22Z
dc.date.issued.fl_str_mv 2023-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FARIAS, Rafael Rocha de. Hypersurfaces with prescribed scalar curvature in geometric flows. 2023. 76 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/72247
identifier_str_mv FARIAS, Rafael Rocha de. Hypersurfaces with prescribed scalar curvature in geometric flows. 2023. 76 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.
url http://www.repositorio.ufc.br/handle/riufc/72247
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/72247/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/72247/3/2023_tese_rrfarias.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
59f9eb24c33b7497a46617d5c1254248
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793060999593984