On Ramsey property for random graphs.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Walner Mendonça dos
Orientador(a): Benevides, Fabrício Siqueira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/50244
Resumo: A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers.
id UFC-7_968a7b051603241246f2aaabd7dc609c
oai_identifier_str oai:repositorio.ufc.br:riufc/50244
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Santos, Walner Mendonça dosBenevides, Fabrício Siqueira2020-02-21T10:34:04Z2020-02-21T10:34:04Z2016-08-16SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/50244A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers.Um grafo G é Ramsey para um par de grafos (F1, F2) se em toda 2-aresta-coloração de G for possível encontrar cópias monocromáticas de F1 com a primeira cor ou cópias monocromáticas de F2 com a segunda cor. O grafo aleatório binomial Gn,p é um subgrafo de Kn, o grafo completo com n vértices, obtido escolhendo cada aresta de Kn independentemente e aleatoriamente com probabilidade p para pertencer à Gn,p. Para um grafo F, seja m2(F) o valor máximo de d(F0) = (e(F0) − 1)/(v(F0) − 2) dentre todos os subgrafos F0 ⊆ F com v(F0) ≥ 3. Se tal máximo é atingido por F0 = F, então dizemos que F é 2-balanceado. Ademais, dizemos que F é estritamente 2-balanceado se d2(F) > d2(F0) para todo subgrafo próprio F0 de F com v(F0) ≥ 3. Para um par de grafos (F1, F2), seja m2(F1, F2) o valor máximo de e(F01)/(v(F01) − 2 + 1/m2(F2)) dentre todos os subgrafos F01⊆ F 1 com v(F01) ≥ 3. Esta dissertação objetiva-se em apresentar uma prova de que para todo par de grafos (F1, F2) tais que F1 é 2-balanceado e m2(F1) > m2(F2) > 1 ou F1 é estritamente 2-balanceado e m2(F1) ≥ m2(F2) > 1, existe uma constante positiva C para o qual assimptoticamente quase certamente, Gn,p é Ramsey para o par (F1, F2), sempre que p ≥ Cn−1/m2(F1,F2) . Este resultado foi conjeturado por Kohayakawa and Kreuter em 1997 sem a condição de balanceamento sobre F1. A prova do principal teorema nesta dissertação deverá usar técnicas desenvolvidas recentemente e conhecidas como hypergraph containers.Ramsey propertyBinomial random graphThreshold functionPropriedade de RamseyGrafo aleatório binomialFunção limiarOn Ramsey property for random graphs.On Ramsey property for random graphs.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_dis_wmsantos.pdf2016_dis_wmsantos.pdfdissertaçao walner mendonçaapplication/pdf479833http://repositorio.ufc.br/bitstream/riufc/50244/5/2016_dis_wmsantos.pdffa1ec247c13bc6c99de7d02b05ca596fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/50244/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56riufc/502442020-02-21 07:34:04.983oai:repositorio.ufc.br:riufc/50244Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-02-21T10:34:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv On Ramsey property for random graphs.
dc.title.en.pt_BR.fl_str_mv On Ramsey property for random graphs.
title On Ramsey property for random graphs.
spellingShingle On Ramsey property for random graphs.
Santos, Walner Mendonça dos
Ramsey property
Binomial random graph
Threshold function
Propriedade de Ramsey
Grafo aleatório binomial
Função limiar
title_short On Ramsey property for random graphs.
title_full On Ramsey property for random graphs.
title_fullStr On Ramsey property for random graphs.
title_full_unstemmed On Ramsey property for random graphs.
title_sort On Ramsey property for random graphs.
author Santos, Walner Mendonça dos
author_facet Santos, Walner Mendonça dos
author_role author
dc.contributor.author.fl_str_mv Santos, Walner Mendonça dos
dc.contributor.advisor1.fl_str_mv Benevides, Fabrício Siqueira
contributor_str_mv Benevides, Fabrício Siqueira
dc.subject.por.fl_str_mv Ramsey property
Binomial random graph
Threshold function
Propriedade de Ramsey
Grafo aleatório binomial
Função limiar
topic Ramsey property
Binomial random graph
Threshold function
Propriedade de Ramsey
Grafo aleatório binomial
Função limiar
description A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers.
publishDate 2016
dc.date.issued.fl_str_mv 2016-08-16
dc.date.accessioned.fl_str_mv 2020-02-21T10:34:04Z
dc.date.available.fl_str_mv 2020-02-21T10:34:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/50244
identifier_str_mv SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/50244
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/50244/5/2016_dis_wmsantos.pdf
http://repositorio.ufc.br/bitstream/riufc/50244/6/license.txt
bitstream.checksum.fl_str_mv fa1ec247c13bc6c99de7d02b05ca596f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793370819198976