On Ramsey property for random graphs.
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/50244 |
Resumo: | A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers. |
| id |
UFC-7_968a7b051603241246f2aaabd7dc609c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/50244 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Santos, Walner Mendonça dosBenevides, Fabrício Siqueira2020-02-21T10:34:04Z2020-02-21T10:34:04Z2016-08-16SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/50244A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers.Um grafo G é Ramsey para um par de grafos (F1, F2) se em toda 2-aresta-coloração de G for possível encontrar cópias monocromáticas de F1 com a primeira cor ou cópias monocromáticas de F2 com a segunda cor. O grafo aleatório binomial Gn,p é um subgrafo de Kn, o grafo completo com n vértices, obtido escolhendo cada aresta de Kn independentemente e aleatoriamente com probabilidade p para pertencer à Gn,p. Para um grafo F, seja m2(F) o valor máximo de d(F0) = (e(F0) − 1)/(v(F0) − 2) dentre todos os subgrafos F0 ⊆ F com v(F0) ≥ 3. Se tal máximo é atingido por F0 = F, então dizemos que F é 2-balanceado. Ademais, dizemos que F é estritamente 2-balanceado se d2(F) > d2(F0) para todo subgrafo próprio F0 de F com v(F0) ≥ 3. Para um par de grafos (F1, F2), seja m2(F1, F2) o valor máximo de e(F01)/(v(F01) − 2 + 1/m2(F2)) dentre todos os subgrafos F01⊆ F 1 com v(F01) ≥ 3. Esta dissertação objetiva-se em apresentar uma prova de que para todo par de grafos (F1, F2) tais que F1 é 2-balanceado e m2(F1) > m2(F2) > 1 ou F1 é estritamente 2-balanceado e m2(F1) ≥ m2(F2) > 1, existe uma constante positiva C para o qual assimptoticamente quase certamente, Gn,p é Ramsey para o par (F1, F2), sempre que p ≥ Cn−1/m2(F1,F2) . Este resultado foi conjeturado por Kohayakawa and Kreuter em 1997 sem a condição de balanceamento sobre F1. A prova do principal teorema nesta dissertação deverá usar técnicas desenvolvidas recentemente e conhecidas como hypergraph containers.Ramsey propertyBinomial random graphThreshold functionPropriedade de RamseyGrafo aleatório binomialFunção limiarOn Ramsey property for random graphs.On Ramsey property for random graphs.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_dis_wmsantos.pdf2016_dis_wmsantos.pdfdissertaçao walner mendonçaapplication/pdf479833http://repositorio.ufc.br/bitstream/riufc/50244/5/2016_dis_wmsantos.pdffa1ec247c13bc6c99de7d02b05ca596fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/50244/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56riufc/502442020-02-21 07:34:04.983oai:repositorio.ufc.br:riufc/50244Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-02-21T10:34:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
On Ramsey property for random graphs. |
| dc.title.en.pt_BR.fl_str_mv |
On Ramsey property for random graphs. |
| title |
On Ramsey property for random graphs. |
| spellingShingle |
On Ramsey property for random graphs. Santos, Walner Mendonça dos Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
| title_short |
On Ramsey property for random graphs. |
| title_full |
On Ramsey property for random graphs. |
| title_fullStr |
On Ramsey property for random graphs. |
| title_full_unstemmed |
On Ramsey property for random graphs. |
| title_sort |
On Ramsey property for random graphs. |
| author |
Santos, Walner Mendonça dos |
| author_facet |
Santos, Walner Mendonça dos |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Santos, Walner Mendonça dos |
| dc.contributor.advisor1.fl_str_mv |
Benevides, Fabrício Siqueira |
| contributor_str_mv |
Benevides, Fabrício Siqueira |
| dc.subject.por.fl_str_mv |
Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
| topic |
Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
| description |
A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016-08-16 |
| dc.date.accessioned.fl_str_mv |
2020-02-21T10:34:04Z |
| dc.date.available.fl_str_mv |
2020-02-21T10:34:04Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/50244 |
| identifier_str_mv |
SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| url |
http://www.repositorio.ufc.br/handle/riufc/50244 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/50244/5/2016_dis_wmsantos.pdf http://repositorio.ufc.br/bitstream/riufc/50244/6/license.txt |
| bitstream.checksum.fl_str_mv |
fa1ec247c13bc6c99de7d02b05ca596f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793370819198976 |