Fórmula de Euler no plano e para poliedros
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/7786 |
Resumo: | Polyhedra are geometric solids formed by a finite number of polygons they can be convex or non-convex, regular or not regular. This work we make three demonstrations of Euler’s theorem for polyhedra in one plane being used graphs. We will adopt preliminary definitions of polygons, polyhedra and graphs and make a brief study of the theorem before the demonstrations analysis when the theorem is valid and what conditions exist polyhedra, since the theorem is accepted. The work brings some applications in the form of questions in the theory presented. |
| id |
UFC-7_a308b972f27332987002e364bb3b3250 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/7786 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Melo, Henrique Alves deMelo, Marcelo Ferreira de2014-03-26T16:18:25Z2014-03-26T16:18:25Z2013MELO, Henrique Alves de. Fórmula de Euler no plano e para poliedros. 2013. 54 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.http://www.repositorio.ufc.br/handle/riufc/7786Polyhedra are geometric solids formed by a finite number of polygons they can be convex or non-convex, regular or not regular. This work we make three demonstrations of Euler’s theorem for polyhedra in one plane being used graphs. We will adopt preliminary definitions of polygons, polyhedra and graphs and make a brief study of the theorem before the demonstrations analysis when the theorem is valid and what conditions exist polyhedra, since the theorem is accepted. The work brings some applications in the form of questions in the theory presented.Os poliedros são sólidos geométricos formados por uma quantidade finita de polígonos. Eles podem ser convexos ou não convexos, regulares ou não regulares . Neste trabalho fazemos três demonstrações do teorema de Euler para poliedros no plano, sendo uma utilizado grafos. Adotaremos definições preliminares de polígonos, poliedros e grafos e faremos um breve estudo do teorema antes das demonstrações analisado quando o teorema é valido em quais condições existem os poliedros, uma vez que o teorema é aceito. O trabalho traz algumas aplicações em forma de questões da teoria apresentada.PoliedrosGeometriaTeoria dos grafosFórmula de Euler no plano e para poliedrosEuler's formula in the plan and for polyhedrainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2013_dis_hamelo.pdf2013_dis_hamelo.pdfapplication/pdf14135976http://repositorio.ufc.br/bitstream/riufc/7786/1/2013_dis_hamelo.pdfe309e7f484cd1319bc4d472ff39b05aeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/7786/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/77862019-01-03 10:48:50.931oai:repositorio.ufc.br:riufc/7786w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-03T13:48:50Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Fórmula de Euler no plano e para poliedros |
| dc.title.en.pt_BR.fl_str_mv |
Euler's formula in the plan and for polyhedra |
| title |
Fórmula de Euler no plano e para poliedros |
| spellingShingle |
Fórmula de Euler no plano e para poliedros Melo, Henrique Alves de Poliedros Geometria Teoria dos grafos |
| title_short |
Fórmula de Euler no plano e para poliedros |
| title_full |
Fórmula de Euler no plano e para poliedros |
| title_fullStr |
Fórmula de Euler no plano e para poliedros |
| title_full_unstemmed |
Fórmula de Euler no plano e para poliedros |
| title_sort |
Fórmula de Euler no plano e para poliedros |
| author |
Melo, Henrique Alves de |
| author_facet |
Melo, Henrique Alves de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Melo, Henrique Alves de |
| dc.contributor.advisor1.fl_str_mv |
Melo, Marcelo Ferreira de |
| contributor_str_mv |
Melo, Marcelo Ferreira de |
| dc.subject.por.fl_str_mv |
Poliedros Geometria Teoria dos grafos |
| topic |
Poliedros Geometria Teoria dos grafos |
| description |
Polyhedra are geometric solids formed by a finite number of polygons they can be convex or non-convex, regular or not regular. This work we make three demonstrations of Euler’s theorem for polyhedra in one plane being used graphs. We will adopt preliminary definitions of polygons, polyhedra and graphs and make a brief study of the theorem before the demonstrations analysis when the theorem is valid and what conditions exist polyhedra, since the theorem is accepted. The work brings some applications in the form of questions in the theory presented. |
| publishDate |
2013 |
| dc.date.issued.fl_str_mv |
2013 |
| dc.date.accessioned.fl_str_mv |
2014-03-26T16:18:25Z |
| dc.date.available.fl_str_mv |
2014-03-26T16:18:25Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MELO, Henrique Alves de. Fórmula de Euler no plano e para poliedros. 2013. 54 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/7786 |
| identifier_str_mv |
MELO, Henrique Alves de. Fórmula de Euler no plano e para poliedros. 2013. 54 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. |
| url |
http://www.repositorio.ufc.br/handle/riufc/7786 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/7786/1/2013_dis_hamelo.pdf http://repositorio.ufc.br/bitstream/riufc/7786/2/license.txt |
| bitstream.checksum.fl_str_mv |
e309e7f484cd1319bc4d472ff39b05ae 8c4401d3d14722a7ca2d07c782a1aab3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793215536627712 |