A Novel adaptive learning vector quantization for time series classification

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Albuquerque, Renan Fonteles
Orientador(a): Braga, Arthur Plínio de Souza
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/45816
Resumo: Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenarios
id UFC-7_b02f2ee6cfff61c68b8b9f7703722ce2
oai_identifier_str oai:repositorio.ufc.br:riufc/45816
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Albuquerque, Renan FontelesTorrico, Bismark ClaureBraga, Arthur Plínio de Souza2019-09-16T18:00:10Z2019-09-16T18:00:10Z2018ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/45816Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenariosA Classificação de Séries Temporais é um problema de interesse em diversas áreas de pesquisa, contendo aplicações interessantes para o uso de técnicas de Aprendizado de Máquina. Dentre as soluções adotadas na literatura, os algoritmos baseados em Redes Neurais Artificiais (RNA) têm se destacado devido à sua capacidade de generalização. Nesta dissertação foi realizado um estudo sobre o desempenho das redes neurais no problema de classificação de séries temporais. É proposta uma nova abordagem adaptativa para a rede neural Learning Vector Quantization (LVQ) combinada com um método de agrupamento conhecido como Self-Organizing Map (SOM). O classificador proposto, denominado Adaptive-LVQ-SOM (ALVQ-SOM), permite a remoção e inclusão de protótipos com o objetivo de otimizar o desempenho de classificação da rede. Outras duas variações inspiradas no método ALVQ-SOM também são apresentadas: Driven-LVQ (dLVQ) e Driven-ALVQ-SOM (dALVQ). Para avaliar a eficácia do método proposto, um estudo comparativo foi conduzido entre os classificadores LVQ clássicos, o ALVQ-SOM e outros dois classificadores baseados em RNA: Multi-Layer Perceptron (MLP) e Support Vector Machine (SVM). Além disso, o algoritmo K -Nearest Neighbours (k-NN) foi inserido neste estudo pois este é considerado um algoritmo de referência na literatura de classificação de séries temporais. A metodologia adotada na avaliação dos algoritmos consiste na aplicação da técnica de validação cruzada 10-Fold na execução de simulações utilizando os diversos classificadores estudados, aplicados a conjuntos de dados distintos. Os resultados dos experimentos mostram que o método de LVQ adaptativo proposto (ALVQ-SOM) supera as versões clássicas do LVQ, apresentando desempenho de classificação superior na maioria dos cenários estudados.Engenharia elétricaAnálise de séries temporaisReconhecimento de padrõesRedes neurais (Computação)Multi-layer perceptronArtificial neural networksAdaptive learningSupport vector machineTime series classificationPattern recognitionA Novel adaptive learning vector quantization for time series classificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_rfalbuquerque.pdf2018_dis_rfalbuquerque.pdfapplication/pdf6708422http://repositorio.ufc.br/bitstream/riufc/45816/3/2018_dis_rfalbuquerque.pdf38f7b1b128bd732dde2ed6c6ed3cd174MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/45816/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/458162020-08-26 11:02:34.653oai:repositorio.ufc.br:riufc/45816Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-26T14:02:34Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv A Novel adaptive learning vector quantization for time series classification
title A Novel adaptive learning vector quantization for time series classification
spellingShingle A Novel adaptive learning vector quantization for time series classification
Albuquerque, Renan Fonteles
Engenharia elétrica
Análise de séries temporais
Reconhecimento de padrões
Redes neurais (Computação)
Multi-layer perceptron
Artificial neural networks
Adaptive learning
Support vector machine
Time series classification
Pattern recognition
title_short A Novel adaptive learning vector quantization for time series classification
title_full A Novel adaptive learning vector quantization for time series classification
title_fullStr A Novel adaptive learning vector quantization for time series classification
title_full_unstemmed A Novel adaptive learning vector quantization for time series classification
title_sort A Novel adaptive learning vector quantization for time series classification
author Albuquerque, Renan Fonteles
author_facet Albuquerque, Renan Fonteles
author_role author
dc.contributor.co-advisor.none.fl_str_mv Torrico, Bismark Claure
dc.contributor.author.fl_str_mv Albuquerque, Renan Fonteles
dc.contributor.advisor1.fl_str_mv Braga, Arthur Plínio de Souza
contributor_str_mv Braga, Arthur Plínio de Souza
dc.subject.por.fl_str_mv Engenharia elétrica
Análise de séries temporais
Reconhecimento de padrões
Redes neurais (Computação)
Multi-layer perceptron
Artificial neural networks
Adaptive learning
Support vector machine
Time series classification
Pattern recognition
topic Engenharia elétrica
Análise de séries temporais
Reconhecimento de padrões
Redes neurais (Computação)
Multi-layer perceptron
Artificial neural networks
Adaptive learning
Support vector machine
Time series classification
Pattern recognition
description Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenarios
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-09-16T18:00:10Z
dc.date.available.fl_str_mv 2019-09-16T18:00:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/45816
identifier_str_mv ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/45816
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/45816/3/2018_dis_rfalbuquerque.pdf
http://repositorio.ufc.br/bitstream/riufc/45816/4/license.txt
bitstream.checksum.fl_str_mv 38f7b1b128bd732dde2ed6c6ed3cd174
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793400754995200