A Novel adaptive learning vector quantization for time series classification
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/45816 |
Resumo: | Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenarios |
| id |
UFC-7_b02f2ee6cfff61c68b8b9f7703722ce2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/45816 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Albuquerque, Renan FontelesTorrico, Bismark ClaureBraga, Arthur Plínio de Souza2019-09-16T18:00:10Z2019-09-16T18:00:10Z2018ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/45816Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenariosA Classificação de Séries Temporais é um problema de interesse em diversas áreas de pesquisa, contendo aplicações interessantes para o uso de técnicas de Aprendizado de Máquina. Dentre as soluções adotadas na literatura, os algoritmos baseados em Redes Neurais Artificiais (RNA) têm se destacado devido à sua capacidade de generalização. Nesta dissertação foi realizado um estudo sobre o desempenho das redes neurais no problema de classificação de séries temporais. É proposta uma nova abordagem adaptativa para a rede neural Learning Vector Quantization (LVQ) combinada com um método de agrupamento conhecido como Self-Organizing Map (SOM). O classificador proposto, denominado Adaptive-LVQ-SOM (ALVQ-SOM), permite a remoção e inclusão de protótipos com o objetivo de otimizar o desempenho de classificação da rede. Outras duas variações inspiradas no método ALVQ-SOM também são apresentadas: Driven-LVQ (dLVQ) e Driven-ALVQ-SOM (dALVQ). Para avaliar a eficácia do método proposto, um estudo comparativo foi conduzido entre os classificadores LVQ clássicos, o ALVQ-SOM e outros dois classificadores baseados em RNA: Multi-Layer Perceptron (MLP) e Support Vector Machine (SVM). Além disso, o algoritmo K -Nearest Neighbours (k-NN) foi inserido neste estudo pois este é considerado um algoritmo de referência na literatura de classificação de séries temporais. A metodologia adotada na avaliação dos algoritmos consiste na aplicação da técnica de validação cruzada 10-Fold na execução de simulações utilizando os diversos classificadores estudados, aplicados a conjuntos de dados distintos. Os resultados dos experimentos mostram que o método de LVQ adaptativo proposto (ALVQ-SOM) supera as versões clássicas do LVQ, apresentando desempenho de classificação superior na maioria dos cenários estudados.Engenharia elétricaAnálise de séries temporaisReconhecimento de padrõesRedes neurais (Computação)Multi-layer perceptronArtificial neural networksAdaptive learningSupport vector machineTime series classificationPattern recognitionA Novel adaptive learning vector quantization for time series classificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_rfalbuquerque.pdf2018_dis_rfalbuquerque.pdfapplication/pdf6708422http://repositorio.ufc.br/bitstream/riufc/45816/3/2018_dis_rfalbuquerque.pdf38f7b1b128bd732dde2ed6c6ed3cd174MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/45816/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/458162020-08-26 11:02:34.653oai:repositorio.ufc.br:riufc/45816Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-26T14:02:34Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
A Novel adaptive learning vector quantization for time series classification |
| title |
A Novel adaptive learning vector quantization for time series classification |
| spellingShingle |
A Novel adaptive learning vector quantization for time series classification Albuquerque, Renan Fonteles Engenharia elétrica Análise de séries temporais Reconhecimento de padrões Redes neurais (Computação) Multi-layer perceptron Artificial neural networks Adaptive learning Support vector machine Time series classification Pattern recognition |
| title_short |
A Novel adaptive learning vector quantization for time series classification |
| title_full |
A Novel adaptive learning vector quantization for time series classification |
| title_fullStr |
A Novel adaptive learning vector quantization for time series classification |
| title_full_unstemmed |
A Novel adaptive learning vector quantization for time series classification |
| title_sort |
A Novel adaptive learning vector quantization for time series classification |
| author |
Albuquerque, Renan Fonteles |
| author_facet |
Albuquerque, Renan Fonteles |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Torrico, Bismark Claure |
| dc.contributor.author.fl_str_mv |
Albuquerque, Renan Fonteles |
| dc.contributor.advisor1.fl_str_mv |
Braga, Arthur Plínio de Souza |
| contributor_str_mv |
Braga, Arthur Plínio de Souza |
| dc.subject.por.fl_str_mv |
Engenharia elétrica Análise de séries temporais Reconhecimento de padrões Redes neurais (Computação) Multi-layer perceptron Artificial neural networks Adaptive learning Support vector machine Time series classification Pattern recognition |
| topic |
Engenharia elétrica Análise de séries temporais Reconhecimento de padrões Redes neurais (Computação) Multi-layer perceptron Artificial neural networks Adaptive learning Support vector machine Time series classification Pattern recognition |
| description |
Time series classification is a problem of interest in several areas of research, containing interesting applications for the use of machine learning techniques. Among the solutions adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been outstanding due to their generalization capacity. In this dissertation, a study was conducted on the performance of neural networks in the problem of time series classification. A new adaptive variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier, called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in order to optimize the classification performance of the network. Two other methods inspiredby ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).To evaluate the efficacy of the proposed method, a comparative study was conducted betweenthe classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-LayerPerceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithmK- NearestNeighbors (k-NN) was inserted in this study, since this algorithm is considered a referenceclassifier in the literature of time series classification. The methodology adopted in the evaluationof the algorithms consists in the application of the cross-validation technique 10-fold in theexecution of simulations using different classifiers, applied to distinct datasets. The results ofthe experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the classical versions of LVQ, presenting superior classification performance in most of the studieds cenarios |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018 |
| dc.date.accessioned.fl_str_mv |
2019-09-16T18:00:10Z |
| dc.date.available.fl_str_mv |
2019-09-16T18:00:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/45816 |
| identifier_str_mv |
ALBUQUERQUE, R. F. A Novel adaptive learning vector quantization for time series classification. 2018. 146 f. Dissertação (Mestrado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018. |
| url |
http://www.repositorio.ufc.br/handle/riufc/45816 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/45816/3/2018_dis_rfalbuquerque.pdf http://repositorio.ufc.br/bitstream/riufc/45816/4/license.txt |
| bitstream.checksum.fl_str_mv |
38f7b1b128bd732dde2ed6c6ed3cd174 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793400754995200 |