Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/46099 |
Resumo: | Um passo importante, porém muitas vezes negligenciado, durante a análise de dados de séries temporais é a imputação de dados ausentes. Nessa dissertação, as características de séries temporais e mecanismos de perda são descritos para ajudar na identificação de qual método de imputação deve ser utilizado para imputar dados ausentes, juntamente com uma revisão bibliográfica de métodos de imputação e seu funcionamento. Os métodos de imputação recomendados pela literatura são utilizados para imputar dados sintéticos com diferentes características e os resultados são discutidos. Dois novos métodos de imputação de séries temporais são apresentados e comparados com métodos de imputação clássicos e métodos do estado-da-arte. O primeiro método de imputação apresentado é o de Imputação pelo Padrão. Esse método se baseia na premissa que utilizando-se o método de imputação recomendado pela literatura para cada padrão de série temporal se obterá os melhores resultados. Heurísticas de separação das séries temporais por padrão foram desenvolvidas. O segundo método apresentado é o de Imputação por Decomposição. Esse método consiste em decompor a série temporal e depois imputar cada um de seus componentes pelos métodos recomendados pela literatura. As combinações desses métodos e o filtro de Kalman também foram testados. Os métodos de imputação discutidos são utilizados para imputar dados de índices financeiros e rastreadores de instabilidade, dados sobre a COVID-19 e dados sobre a dengue. Predições são realizadas com os dados dos casos de estudo e os resultados são apresentados. Os resultados obtidos pelo método de Imputação por Padrão combinado com o filtro de Kalman são consistentemente satisfatórios, apesar de nem sempre obter os melhores resultados. O método de Imputação por Decomposição também obteve bons resultados, principalmente quando algum tempo foi gasto para investigar qual de suas variações se adequou melhor a cada conjunto de dados. No geral, ambos os métodos mostraram resultados similares e/ou melhores que os métodos de imputação clássicos. |
| id |
UFMG_c52974862cd94c9d1220dbf9f2f7ee37 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/46099 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time seriesImputação por decomposição e pela natureza da série temporal : novos métodos de imputação para dados ausentes em séries temporaisEngenharia elétricaAnálise de séries temporaisAusência de dados (Estatística)Ciências sociais - Métodos estatísticosMissing dataTime seriesImputation methodsDecompositionPatternUm passo importante, porém muitas vezes negligenciado, durante a análise de dados de séries temporais é a imputação de dados ausentes. Nessa dissertação, as características de séries temporais e mecanismos de perda são descritos para ajudar na identificação de qual método de imputação deve ser utilizado para imputar dados ausentes, juntamente com uma revisão bibliográfica de métodos de imputação e seu funcionamento. Os métodos de imputação recomendados pela literatura são utilizados para imputar dados sintéticos com diferentes características e os resultados são discutidos. Dois novos métodos de imputação de séries temporais são apresentados e comparados com métodos de imputação clássicos e métodos do estado-da-arte. O primeiro método de imputação apresentado é o de Imputação pelo Padrão. Esse método se baseia na premissa que utilizando-se o método de imputação recomendado pela literatura para cada padrão de série temporal se obterá os melhores resultados. Heurísticas de separação das séries temporais por padrão foram desenvolvidas. O segundo método apresentado é o de Imputação por Decomposição. Esse método consiste em decompor a série temporal e depois imputar cada um de seus componentes pelos métodos recomendados pela literatura. As combinações desses métodos e o filtro de Kalman também foram testados. Os métodos de imputação discutidos são utilizados para imputar dados de índices financeiros e rastreadores de instabilidade, dados sobre a COVID-19 e dados sobre a dengue. Predições são realizadas com os dados dos casos de estudo e os resultados são apresentados. Os resultados obtidos pelo método de Imputação por Padrão combinado com o filtro de Kalman são consistentemente satisfatórios, apesar de nem sempre obter os melhores resultados. O método de Imputação por Decomposição também obteve bons resultados, principalmente quando algum tempo foi gasto para investigar qual de suas variações se adequou melhor a cada conjunto de dados. No geral, ambos os métodos mostraram resultados similares e/ou melhores que os métodos de imputação clássicos.Universidade Federal de Minas Gerais2022-10-07T17:37:19Z2025-09-08T23:10:29Z2022-10-07T17:37:19Z2021-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/46099enghttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessSilvana Mara Ribeiroreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:10:29Zoai:repositorio.ufmg.br:1843/46099Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:10:29Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series Imputação por decomposição e pela natureza da série temporal : novos métodos de imputação para dados ausentes em séries temporais |
| title |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| spellingShingle |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series Silvana Mara Ribeiro Engenharia elétrica Análise de séries temporais Ausência de dados (Estatística) Ciências sociais - Métodos estatísticos Missing data Time series Imputation methods Decomposition Pattern |
| title_short |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| title_full |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| title_fullStr |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| title_full_unstemmed |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| title_sort |
Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series |
| author |
Silvana Mara Ribeiro |
| author_facet |
Silvana Mara Ribeiro |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Silvana Mara Ribeiro |
| dc.subject.por.fl_str_mv |
Engenharia elétrica Análise de séries temporais Ausência de dados (Estatística) Ciências sociais - Métodos estatísticos Missing data Time series Imputation methods Decomposition Pattern |
| topic |
Engenharia elétrica Análise de séries temporais Ausência de dados (Estatística) Ciências sociais - Métodos estatísticos Missing data Time series Imputation methods Decomposition Pattern |
| description |
Um passo importante, porém muitas vezes negligenciado, durante a análise de dados de séries temporais é a imputação de dados ausentes. Nessa dissertação, as características de séries temporais e mecanismos de perda são descritos para ajudar na identificação de qual método de imputação deve ser utilizado para imputar dados ausentes, juntamente com uma revisão bibliográfica de métodos de imputação e seu funcionamento. Os métodos de imputação recomendados pela literatura são utilizados para imputar dados sintéticos com diferentes características e os resultados são discutidos. Dois novos métodos de imputação de séries temporais são apresentados e comparados com métodos de imputação clássicos e métodos do estado-da-arte. O primeiro método de imputação apresentado é o de Imputação pelo Padrão. Esse método se baseia na premissa que utilizando-se o método de imputação recomendado pela literatura para cada padrão de série temporal se obterá os melhores resultados. Heurísticas de separação das séries temporais por padrão foram desenvolvidas. O segundo método apresentado é o de Imputação por Decomposição. Esse método consiste em decompor a série temporal e depois imputar cada um de seus componentes pelos métodos recomendados pela literatura. As combinações desses métodos e o filtro de Kalman também foram testados. Os métodos de imputação discutidos são utilizados para imputar dados de índices financeiros e rastreadores de instabilidade, dados sobre a COVID-19 e dados sobre a dengue. Predições são realizadas com os dados dos casos de estudo e os resultados são apresentados. Os resultados obtidos pelo método de Imputação por Padrão combinado com o filtro de Kalman são consistentemente satisfatórios, apesar de nem sempre obter os melhores resultados. O método de Imputação por Decomposição também obteve bons resultados, principalmente quando algum tempo foi gasto para investigar qual de suas variações se adequou melhor a cada conjunto de dados. No geral, ambos os métodos mostraram resultados similares e/ou melhores que os métodos de imputação clássicos. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07-28 2022-10-07T17:37:19Z 2022-10-07T17:37:19Z 2025-09-08T23:10:29Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/46099 |
| url |
https://hdl.handle.net/1843/46099 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413955959816192 |