Maximizando o primeiro autovalor do operador de Jacobi
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/72438 |
Resumo: | We consider the Jacobi operator, defined on a closed oriented hypersurfaces immersed in the Euclidean space with the same volume of the unit sphere by L = −∆−|II|2, where −∆ is the Laplace-Beltrami operator with ∆u = div(∇u) and |II| 2 = ∑nj = 1k2j is the square of second fundamental form. We show a generalization for the classical result of the Willmore functional for the Euclidean sphere. As a consequence, by adding a topological hypothesis we prove that the fi rst eigenvalue of the Jacobi operator in the Euclidean sphere is a global maximum. |
| id |
UFC-7_bc1df7bfff186cddf05b9e83f80da437 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/72438 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Vasconcelos, Rosa Tayane deMontenegro, José Fábio Bezerra2023-05-23T14:26:17Z2023-05-23T14:26:17Z2022-02-23VASCONCELOS, Rosa Tayane de. Maximizando o primeiro autovalor do operador de Jacobi. 2022. 86 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/72438We consider the Jacobi operator, defined on a closed oriented hypersurfaces immersed in the Euclidean space with the same volume of the unit sphere by L = −∆−|II|2, where −∆ is the Laplace-Beltrami operator with ∆u = div(∇u) and |II| 2 = ∑nj = 1k2j is the square of second fundamental form. We show a generalization for the classical result of the Willmore functional for the Euclidean sphere. As a consequence, by adding a topological hypothesis we prove that the fi rst eigenvalue of the Jacobi operator in the Euclidean sphere is a global maximum.Considerando o operador de Jacobi L definido no espaço de hipersuperfícies orientadas e fechadas imersas no espaço euclidiano que têm o mesmo volume da esfera unitária dado por L = −∆−|II|2, onde −∆ é o operador de Laplace-Beltrami defi nido por ∆u = div(∇u) e |II| 2 = ∑nj = 1k2j é o quadrado da norma da segunda forma fundamental de M. Apresentamos uma generalização para os resultados clássicos do funcional de Willmore para esfera euclidiana e, como consequência, acrescentando uma hipótese topológica provamos que o primeiro autovalor do operador de Jacobi na esfera euclidiana é um máximo global.Operador de JacobiPrimeiro autovalorOperador laplacianoOperador de SchrödingerFuncional de WillmoreCurvatura escalar totalJacobi operatorFirst eigenvalueLaplacian operatorSchrödinger operatorWillmore functionalTotal scalar curvatureMaximizando o primeiro autovalor do operador de JacobiMaximizing the first eigenvalue of the Jacobi operatorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/72438/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2022_tese_rtvasconcelos.pdf2022_tese_rtvasconcelos.pdftese rosa tayaneapplication/pdf624160http://repositorio.ufc.br/bitstream/riufc/72438/3/2022_tese_rtvasconcelos.pdf26b9a22e2c239d7d2fd2f55a72533010MD53riufc/724382023-05-23 11:26:17.41oai:repositorio.ufc.br:riufc/72438Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-05-23T14:26:17Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Maximizando o primeiro autovalor do operador de Jacobi |
| dc.title.en.pt_BR.fl_str_mv |
Maximizing the first eigenvalue of the Jacobi operator |
| title |
Maximizando o primeiro autovalor do operador de Jacobi |
| spellingShingle |
Maximizando o primeiro autovalor do operador de Jacobi Vasconcelos, Rosa Tayane de Operador de Jacobi Primeiro autovalor Operador laplaciano Operador de Schrödinger Funcional de Willmore Curvatura escalar total Jacobi operator First eigenvalue Laplacian operator Schrödinger operator Willmore functional Total scalar curvature |
| title_short |
Maximizando o primeiro autovalor do operador de Jacobi |
| title_full |
Maximizando o primeiro autovalor do operador de Jacobi |
| title_fullStr |
Maximizando o primeiro autovalor do operador de Jacobi |
| title_full_unstemmed |
Maximizando o primeiro autovalor do operador de Jacobi |
| title_sort |
Maximizando o primeiro autovalor do operador de Jacobi |
| author |
Vasconcelos, Rosa Tayane de |
| author_facet |
Vasconcelos, Rosa Tayane de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Vasconcelos, Rosa Tayane de |
| dc.contributor.advisor1.fl_str_mv |
Montenegro, José Fábio Bezerra |
| contributor_str_mv |
Montenegro, José Fábio Bezerra |
| dc.subject.por.fl_str_mv |
Operador de Jacobi Primeiro autovalor Operador laplaciano Operador de Schrödinger Funcional de Willmore Curvatura escalar total Jacobi operator First eigenvalue Laplacian operator Schrödinger operator Willmore functional Total scalar curvature |
| topic |
Operador de Jacobi Primeiro autovalor Operador laplaciano Operador de Schrödinger Funcional de Willmore Curvatura escalar total Jacobi operator First eigenvalue Laplacian operator Schrödinger operator Willmore functional Total scalar curvature |
| description |
We consider the Jacobi operator, defined on a closed oriented hypersurfaces immersed in the Euclidean space with the same volume of the unit sphere by L = −∆−|II|2, where −∆ is the Laplace-Beltrami operator with ∆u = div(∇u) and |II| 2 = ∑nj = 1k2j is the square of second fundamental form. We show a generalization for the classical result of the Willmore functional for the Euclidean sphere. As a consequence, by adding a topological hypothesis we prove that the fi rst eigenvalue of the Jacobi operator in the Euclidean sphere is a global maximum. |
| publishDate |
2022 |
| dc.date.issued.fl_str_mv |
2022-02-23 |
| dc.date.accessioned.fl_str_mv |
2023-05-23T14:26:17Z |
| dc.date.available.fl_str_mv |
2023-05-23T14:26:17Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
VASCONCELOS, Rosa Tayane de. Maximizando o primeiro autovalor do operador de Jacobi. 2022. 86 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/72438 |
| identifier_str_mv |
VASCONCELOS, Rosa Tayane de. Maximizando o primeiro autovalor do operador de Jacobi. 2022. 86 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| url |
http://www.repositorio.ufc.br/handle/riufc/72438 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/72438/4/license.txt http://repositorio.ufc.br/bitstream/riufc/72438/3/2022_tese_rtvasconcelos.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 26b9a22e2c239d7d2fd2f55a72533010 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793415896432640 |