Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pontes, Fernanda Carla Ferreira de
Orientador(a): Silva, Júlio César do Vale
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/76913
Resumo: Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods.
id UFC-7_cfc44de560df718db06babda0fe3a02e
oai_identifier_str oai:repositorio.ufc.br:riufc/76913
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Pontes, Fernanda Carla Ferreira deFritsche Neto, RobertoSilva, Júlio César do Vale2024-05-14T20:39:26Z2024-05-14T20:39:26Z2024PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/76913Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods.Estudos de genética de associação (GWAS) identificam variações no genoma relacionadas a fenótipos específicos, geralmente analisadas por marcadores SNP (Single nucleotide polymorphisms). Plataformas de genotipagem como aquelas que envolvem a hibridização genômica de microarray (SNP-Chip ou SNP-Array) ou técnicas de genotipagem por sequenciamento (GBS) são eficazes para genotipar várias amostras com centenas de milhares de SNP. No entanto, essas abordagens podem causar viés em análises de germoplasma de milho tropical, pois geralmente se utiliza a linhagem temperada B73 como genoma de referência. Assim, uma alternativa para contornar esse entrave é o uso de um genoma simulado denominado “Mock”, adaptado à população e criado com ferramentas de bioinformática. Alguns poucos estudos demonstraram recentemente que SNP-Array, GBS e Mock geram resultados semelhantes no que diz respeito a estruturação de população, definição de grupos heteróticos, escolha de testadores até a predição genômica de híbrido. Contudo, não foram identificados estudos até o momento sobre os resultados gerados por essas diferentes abordagens de genotipagem quanto a GWAS. Portanto, o objetivo do estudo foi verificar a equivalência entre os três cenários de genotipagem na identificação de genes de efeito significativo em GWAS. Para isso, usou-se o milho como espécie modelo, na qual 360 linhagens endogâmicas de um painel público foram genotipadas por SNP-Array via plataforma Affymetrix e GBS. Os dados de GBS foram usados para realizar a chamada SNP utilizando a linhagem endogâmica temperada B73 (GBS-B73) como genoma de referência e, um genoma simulado “Mock” obtido in sílico (GBS-Mock). O estudo contemplou quatro caracteres da parte aérea com plantas crescidas em dois níveis de suprimento de água: bem irrigado (WW) e estresse hídrico (WS). No total, foram identificados 46, 34 e 31 SNP nos cenários SNP-Array, GBS-B73 e GBS-Mock, respectivamente, nos dois níveis de suplementação hídrica. De forma geral, observou-se entre os cenários a identificação de genes candidatos diferentes, mas que apresentam a mesma funcionalidade. Em relação a SNP-Array e GBS-B73, foram identificados genes com semelhança funcional mesmo sem coincidência na posição física dos SNP. Esses genes ou regiões estão envolvidos em diversos processos e respostas com aplicações no melhoramento vegetal. Em termos de acurácia, a combinação de cenários de genotipagem em comparação a aqueles isolados, é viável e recomendada, pois resultou em aumento para todos os caracteres nas duas condições de suprimento hídrico. Neste sentido, vale destacar a combinação dos cenários GBS-B73 e GBS-Mock, não apenas devido ao incremento na resolução dos resultados de GWAS, mas também pela redução de custos associados à genotipagem bem como a possibilidade de conduzir métodos de melhoramento genômico.Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditionsCombining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSNP-ArrayGenotipagem por sequenciamentoGenoma simuladoGWASSNP-ArrayGenotyping by SequencingSimulated genomeGWASCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0001-9599-2601http://lattes.cnpq.br/1781719310284622https://orcid.org/0000-0002-3497-9793http://lattes.cnpq.br/7549117961923408https://orcid.org/0000-0003-4310-0047http://lattes.cnpq.br/58304814803289102024-05-14ORIGINAL2024_tese_fcfpontes.pdf2024_tese_fcfpontes.pdfapplication/pdf4761004http://repositorio.ufc.br/bitstream/riufc/76913/4/2024_tese_fcfpontes.pdff1c1b747534039cfcd0f85c4bb3aea1aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/76913/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55riufc/769132024-05-14 17:39:27.584oai:repositorio.ufc.br:riufc/76913Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-05-14T20:39:27Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
dc.title.en.pt_BR.fl_str_mv Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
title Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
spellingShingle Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
Pontes, Fernanda Carla Ferreira de
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
SNP-Array
Genotipagem por sequenciamento
Genoma simulado
GWAS
SNP-Array
Genotyping by Sequencing
Simulated genome
GWAS
title_short Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
title_full Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
title_fullStr Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
title_full_unstemmed Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
title_sort Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
author Pontes, Fernanda Carla Ferreira de
author_facet Pontes, Fernanda Carla Ferreira de
author_role author
dc.contributor.co-advisor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Pontes, Fernanda Carla Ferreira de
dc.contributor.advisor1.fl_str_mv Silva, Júlio César do Vale
contributor_str_mv Silva, Júlio César do Vale
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
topic CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
SNP-Array
Genotipagem por sequenciamento
Genoma simulado
GWAS
SNP-Array
Genotyping by Sequencing
Simulated genome
GWAS
dc.subject.ptbr.pt_BR.fl_str_mv SNP-Array
Genotipagem por sequenciamento
Genoma simulado
GWAS
dc.subject.en.pt_BR.fl_str_mv SNP-Array
Genotyping by Sequencing
Simulated genome
GWAS
description Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-05-14T20:39:26Z
dc.date.available.fl_str_mv 2024-05-14T20:39:26Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/76913
identifier_str_mv PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/76913
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/76913/4/2024_tese_fcfpontes.pdf
http://repositorio.ufc.br/bitstream/riufc/76913/5/license.txt
bitstream.checksum.fl_str_mv f1c1b747534039cfcd0f85c4bb3aea1a
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793025651048448