Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/76913 |
Resumo: | Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods. |
| id |
UFC-7_cfc44de560df718db06babda0fe3a02e |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/76913 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Pontes, Fernanda Carla Ferreira deFritsche Neto, RobertoSilva, Júlio César do Vale2024-05-14T20:39:26Z2024-05-14T20:39:26Z2024PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/76913Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods.Estudos de genética de associação (GWAS) identificam variações no genoma relacionadas a fenótipos específicos, geralmente analisadas por marcadores SNP (Single nucleotide polymorphisms). Plataformas de genotipagem como aquelas que envolvem a hibridização genômica de microarray (SNP-Chip ou SNP-Array) ou técnicas de genotipagem por sequenciamento (GBS) são eficazes para genotipar várias amostras com centenas de milhares de SNP. No entanto, essas abordagens podem causar viés em análises de germoplasma de milho tropical, pois geralmente se utiliza a linhagem temperada B73 como genoma de referência. Assim, uma alternativa para contornar esse entrave é o uso de um genoma simulado denominado “Mock”, adaptado à população e criado com ferramentas de bioinformática. Alguns poucos estudos demonstraram recentemente que SNP-Array, GBS e Mock geram resultados semelhantes no que diz respeito a estruturação de população, definição de grupos heteróticos, escolha de testadores até a predição genômica de híbrido. Contudo, não foram identificados estudos até o momento sobre os resultados gerados por essas diferentes abordagens de genotipagem quanto a GWAS. Portanto, o objetivo do estudo foi verificar a equivalência entre os três cenários de genotipagem na identificação de genes de efeito significativo em GWAS. Para isso, usou-se o milho como espécie modelo, na qual 360 linhagens endogâmicas de um painel público foram genotipadas por SNP-Array via plataforma Affymetrix e GBS. Os dados de GBS foram usados para realizar a chamada SNP utilizando a linhagem endogâmica temperada B73 (GBS-B73) como genoma de referência e, um genoma simulado “Mock” obtido in sílico (GBS-Mock). O estudo contemplou quatro caracteres da parte aérea com plantas crescidas em dois níveis de suprimento de água: bem irrigado (WW) e estresse hídrico (WS). No total, foram identificados 46, 34 e 31 SNP nos cenários SNP-Array, GBS-B73 e GBS-Mock, respectivamente, nos dois níveis de suplementação hídrica. De forma geral, observou-se entre os cenários a identificação de genes candidatos diferentes, mas que apresentam a mesma funcionalidade. Em relação a SNP-Array e GBS-B73, foram identificados genes com semelhança funcional mesmo sem coincidência na posição física dos SNP. Esses genes ou regiões estão envolvidos em diversos processos e respostas com aplicações no melhoramento vegetal. Em termos de acurácia, a combinação de cenários de genotipagem em comparação a aqueles isolados, é viável e recomendada, pois resultou em aumento para todos os caracteres nas duas condições de suprimento hídrico. Neste sentido, vale destacar a combinação dos cenários GBS-B73 e GBS-Mock, não apenas devido ao incremento na resolução dos resultados de GWAS, mas também pela redução de custos associados à genotipagem bem como a possibilidade de conduzir métodos de melhoramento genômico.Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditionsCombining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSNP-ArrayGenotipagem por sequenciamentoGenoma simuladoGWASSNP-ArrayGenotyping by SequencingSimulated genomeGWASCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0001-9599-2601http://lattes.cnpq.br/1781719310284622https://orcid.org/0000-0002-3497-9793http://lattes.cnpq.br/7549117961923408https://orcid.org/0000-0003-4310-0047http://lattes.cnpq.br/58304814803289102024-05-14ORIGINAL2024_tese_fcfpontes.pdf2024_tese_fcfpontes.pdfapplication/pdf4761004http://repositorio.ufc.br/bitstream/riufc/76913/4/2024_tese_fcfpontes.pdff1c1b747534039cfcd0f85c4bb3aea1aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/76913/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55riufc/769132024-05-14 17:39:27.584oai:repositorio.ufc.br:riufc/76913Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-05-14T20:39:27Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| dc.title.en.pt_BR.fl_str_mv |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| title |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| spellingShingle |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions Pontes, Fernanda Carla Ferreira de CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA SNP-Array Genotipagem por sequenciamento Genoma simulado GWAS SNP-Array Genotyping by Sequencing Simulated genome GWAS |
| title_short |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| title_full |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| title_fullStr |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| title_full_unstemmed |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| title_sort |
Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions |
| author |
Pontes, Fernanda Carla Ferreira de |
| author_facet |
Pontes, Fernanda Carla Ferreira de |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Fritsche Neto, Roberto |
| dc.contributor.author.fl_str_mv |
Pontes, Fernanda Carla Ferreira de |
| dc.contributor.advisor1.fl_str_mv |
Silva, Júlio César do Vale |
| contributor_str_mv |
Silva, Júlio César do Vale |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA |
| topic |
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA SNP-Array Genotipagem por sequenciamento Genoma simulado GWAS SNP-Array Genotyping by Sequencing Simulated genome GWAS |
| dc.subject.ptbr.pt_BR.fl_str_mv |
SNP-Array Genotipagem por sequenciamento Genoma simulado GWAS |
| dc.subject.en.pt_BR.fl_str_mv |
SNP-Array Genotyping by Sequencing Simulated genome GWAS |
| description |
Genome-Wide Association Studies (GWAS) identify genome variations related to specific phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping various samples with hundreds of thousands of SNPs. However, these approaches can introduce bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the reference genome. Therefore, an alternative to overcome this limitation is using a simulated genome called “Mock,” which is adapted to the population and created with bioinformatics tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results concerning population structure, definition of heterotic groups, tester selection, and genomic hybrid prediction. However, no studies have been identified thus far regarding the results generated by these different genotyping approaches for GWAS. Therefore, this study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels. Overall, the candidate genes identified varied along the scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water supply conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also due to the reduction of costs associated with genotyping as well as the possibility of conducting genomic breeding methods. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-05-14T20:39:26Z |
| dc.date.available.fl_str_mv |
2024-05-14T20:39:26Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/76913 |
| identifier_str_mv |
PONTES, Fernanda Carla Ferreira de. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. 2024. 63 f. Tese (Doutorado em Agronomia/Fitotecnia) – Universidade Federal do Ceará, Fortaleza, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/76913 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/76913/4/2024_tese_fcfpontes.pdf http://repositorio.ufc.br/bitstream/riufc/76913/5/license.txt |
| bitstream.checksum.fl_str_mv |
f1c1b747534039cfcd0f85c4bb3aea1a 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793025651048448 |