Mathematical programming approaches for NP-Hard constrained shortest path problems

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Saraiva, Rommel Dias
Orientador(a): Andrade, Rafael Castro de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/46642
Resumo: In this work, we study two NP-Hard routing problems: the shortest path with negative cycles (SPNC) and the constrained shortest path tour problem (CSPTP). For the SPNC, we propose three exact approaches based on mathematical programming: a compact mixed integer linear programming model, a specialized branch-and-bound algorithm, and a cutting-plane method. We perform numerical experiments comprising both randomly generated and benchmark instances from the literature. The computational tests show that the proposed approaches stand out from state-of-the-art mathematical programming techniques. Moreover, we discuss the linear relaxations of models present it the literature. Concerning the CSPTP, we show two compact models for the problem: a pure integer linear programming model, which we call dummy node-based model; and a mixed integer linear programming one, which we call frontier node-based model. For the latter, we show valid inequalities and propose deterministic and non-deterministic Lagrangian heuristics. Experiments performed on both randomly generated and benchmark instances from the literature validate and attest the effectiveness of our contributions, which achieve the optimal solution in the vast majority of cases. We show that the dummy node and the frontier node-based models alternate better results depending on the characteristics of each instance. The efficiency over specialized branch-and-bound algorithms from the literature is also proven through experiments, as well as the potentialities behind the Lagrangian heuristics, which find the optimal solution for a large number of instances.
id UFC-7_d1c51bfe65c5601b07dca2130af62d69
oai_identifier_str oai:repositorio.ufc.br:riufc/46642
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Saraiva, Rommel DiasAndrade, Rafael Castro de2019-10-09T18:10:42Z2019-10-09T18:10:42Z2019SARAIVA, Rommel Dias. Mathematical programming approaches for NP-Hard constrained shortest path problems. 2019. 74 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/46642In this work, we study two NP-Hard routing problems: the shortest path with negative cycles (SPNC) and the constrained shortest path tour problem (CSPTP). For the SPNC, we propose three exact approaches based on mathematical programming: a compact mixed integer linear programming model, a specialized branch-and-bound algorithm, and a cutting-plane method. We perform numerical experiments comprising both randomly generated and benchmark instances from the literature. The computational tests show that the proposed approaches stand out from state-of-the-art mathematical programming techniques. Moreover, we discuss the linear relaxations of models present it the literature. Concerning the CSPTP, we show two compact models for the problem: a pure integer linear programming model, which we call dummy node-based model; and a mixed integer linear programming one, which we call frontier node-based model. For the latter, we show valid inequalities and propose deterministic and non-deterministic Lagrangian heuristics. Experiments performed on both randomly generated and benchmark instances from the literature validate and attest the effectiveness of our contributions, which achieve the optimal solution in the vast majority of cases. We show that the dummy node and the frontier node-based models alternate better results depending on the characteristics of each instance. The efficiency over specialized branch-and-bound algorithms from the literature is also proven through experiments, as well as the potentialities behind the Lagrangian heuristics, which find the optimal solution for a large number of instances.Neste trabalho, estudamos dois problemas de roteamento NP-Difíceis: o problema do caminho mínimo na presença de ciclos negativos (referenciado na literatura estrangeira de shortest path with negative cycles – SPNC) e o problema da trilha mínima com restrição de agrupamento (referenciado na literatura estrangeira como constrained shortest path tour problem – CSPTP). Para o SPNC, propomos três abordagens exatas baseadas em programação matemática: um modelo compacto de programação linear inteira mista, um algoritmo de branch-and-bound especializado e um método de planos de corte. Realizamos uma experimentação englobando tanto instâncias geradas aleatoriamente como também instâncias concebidas por outros autores. Os testes computacionais mostram que as abordagens propostas se sobressaem em relação às técnicas de programação matemática do estado da arte. Além disso, fazemos uma discussão sobre a relaxação linear dos modelos matemáticos presentes na literatura do problema. Com relação ao CSPTP, apresentamos dois modelos compactos para o problema: um de programação linear inteira pura, que chamamos de modelo baseado em vértices artificiais; e outro de programação linear inteira mista, que chamamos de modelo baseado em vértices fronteiras. Para este último, mostramos desigualdades válidas e propomos heurísticas Lagrangeanas determinísticas e não-determinísticas. Experimentos realizados em instâncias da literatura e em outras geradas aleatoriamente validam e atestam a eficácia das nossas contribuições, que alcançam a solução ótima em uma larga quantidade de casos. Mostramos que os modelos baseados em vértices artificais e fronteiras alternam bons resultados dependendo das características de cada instância. A eficiência das metodologias exatas propostas quando comparadas aos algoritmos de branch-and-bound especializados, presentes na literatura para o CSPTP, também é comprovada por meio dos testes computacionais, assim como as potencialidades das heurísticas Lagrangeanas, que alcançam a solução ótima para grande parte das instâncias abordadas.Combinatorial optimizationShortest path with negative cyclesConstrained shortest path tour problemInteger linear programmingLagrangian relaxationHeuristicsMathematical programming approaches for NP-Hard constrained shortest path problemsMathematical programming approaches for NP-Hard constrained shortest path problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2019_tese_rdsaraiva.pdf2019_tese_rdsaraiva.pdfapplication/pdf1012748http://repositorio.ufc.br/bitstream/riufc/46642/3/2019_tese_rdsaraiva.pdfa36f6fac6fb6828b02daedc715c71a19MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/46642/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/466422019-10-09 15:10:42.834oai:repositorio.ufc.br:riufc/46642Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-10-09T18:10:42Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Mathematical programming approaches for NP-Hard constrained shortest path problems
dc.title.en.pt_BR.fl_str_mv Mathematical programming approaches for NP-Hard constrained shortest path problems
title Mathematical programming approaches for NP-Hard constrained shortest path problems
spellingShingle Mathematical programming approaches for NP-Hard constrained shortest path problems
Saraiva, Rommel Dias
Combinatorial optimization
Shortest path with negative cycles
Constrained shortest path tour problem
Integer linear programming
Lagrangian relaxation
Heuristics
title_short Mathematical programming approaches for NP-Hard constrained shortest path problems
title_full Mathematical programming approaches for NP-Hard constrained shortest path problems
title_fullStr Mathematical programming approaches for NP-Hard constrained shortest path problems
title_full_unstemmed Mathematical programming approaches for NP-Hard constrained shortest path problems
title_sort Mathematical programming approaches for NP-Hard constrained shortest path problems
author Saraiva, Rommel Dias
author_facet Saraiva, Rommel Dias
author_role author
dc.contributor.author.fl_str_mv Saraiva, Rommel Dias
dc.contributor.advisor1.fl_str_mv Andrade, Rafael Castro de
contributor_str_mv Andrade, Rafael Castro de
dc.subject.por.fl_str_mv Combinatorial optimization
Shortest path with negative cycles
Constrained shortest path tour problem
Integer linear programming
Lagrangian relaxation
Heuristics
topic Combinatorial optimization
Shortest path with negative cycles
Constrained shortest path tour problem
Integer linear programming
Lagrangian relaxation
Heuristics
description In this work, we study two NP-Hard routing problems: the shortest path with negative cycles (SPNC) and the constrained shortest path tour problem (CSPTP). For the SPNC, we propose three exact approaches based on mathematical programming: a compact mixed integer linear programming model, a specialized branch-and-bound algorithm, and a cutting-plane method. We perform numerical experiments comprising both randomly generated and benchmark instances from the literature. The computational tests show that the proposed approaches stand out from state-of-the-art mathematical programming techniques. Moreover, we discuss the linear relaxations of models present it the literature. Concerning the CSPTP, we show two compact models for the problem: a pure integer linear programming model, which we call dummy node-based model; and a mixed integer linear programming one, which we call frontier node-based model. For the latter, we show valid inequalities and propose deterministic and non-deterministic Lagrangian heuristics. Experiments performed on both randomly generated and benchmark instances from the literature validate and attest the effectiveness of our contributions, which achieve the optimal solution in the vast majority of cases. We show that the dummy node and the frontier node-based models alternate better results depending on the characteristics of each instance. The efficiency over specialized branch-and-bound algorithms from the literature is also proven through experiments, as well as the potentialities behind the Lagrangian heuristics, which find the optimal solution for a large number of instances.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-10-09T18:10:42Z
dc.date.available.fl_str_mv 2019-10-09T18:10:42Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SARAIVA, Rommel Dias. Mathematical programming approaches for NP-Hard constrained shortest path problems. 2019. 74 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/46642
identifier_str_mv SARAIVA, Rommel Dias. Mathematical programming approaches for NP-Hard constrained shortest path problems. 2019. 74 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.
url http://www.repositorio.ufc.br/handle/riufc/46642
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/46642/3/2019_tese_rdsaraiva.pdf
http://repositorio.ufc.br/bitstream/riufc/46642/4/license.txt
bitstream.checksum.fl_str_mv a36f6fac6fb6828b02daedc715c71a19
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793191315570688