Dissipação no modelo Fermi-Ulam

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Sousa, Danila Fernandes Tavares de
Orientador(a): Costa Filho, Raimundo Nogueira da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/13628
Resumo: In this work, we revisit the Fermi accelerator model, also known as Fermi-Ulam model. This model consists of a classical particle of unitary mass wich is confined to bounce between two rigid walls. One of them is fixed and the other one is assumed to move periodically in time. The particle collisions with the walls are assumed to be elastic. The description of the dynamic is made everytime the particle collides with the moving wall, so that we know the particle’s time and velocity at each collision needed to describe the dynamic of the system. Two versions for this model are studied: the complete and the simplified versions. In the simplified version, two walls of the model are assumed to be fixed. The Fermi-Ulam model is a conservative model because it preserves area of the phase space. Our analytical and numerical results for this conservative model are presented and discussed. Some dynamical properties for a particle suffering the action of a drag force are obtained for a dissipative Fermi-Ulam model. The dissipation is introduced via a viscous drag force, like a gas, wich is assumed to be proportional to any power of the velocity, F = −ηV γ . The dynamics of the models are described by two dimensional nonlinear mappings obtained via the solution of the second Newtons’ law of motion. We prove analytically that the decay of high energy is given by a continued fraction wich recovers the following expressions: (i) linear for γ = 1, (ii) exponential for γ = 2 and (iii) second degree polynomial type for γ = 1.5. For any value of γ, the numerical results shows a polynomial behavior for the velocity decay. Our results are discussed for both the complete and simplified versions. The phase spaces and the basin of attraction for some values of γ are obtained. Complementing our studies on this dissipative version of the Fermi-Ulam model, a mixed model was proposed. In this model, one particle travels through two different media. It started in a medium with no dissipation lets say vacuum and at some point it enters a region with a dissipative medium. The dissipation is also introduced by a viscous drag force, such that F = −ηV γ . In particular, for the study of the mixed model we use γ = 1 and γ = 2. The system is characterized by the ratio of the two medium length ξ. We show that there is a smooth transition of the velocity regime with ξ. We construct the phase spaces for the complete and simplified versions of the models. For the limiting cases, ξ = 0 or ξ = 1, the system behaves like one medium only.
id UFC-7_d1f859ac3fbf5d3d64a3d7c450437e31
oai_identifier_str oai:repositorio.ufc.br:riufc/13628
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Sousa, Danila Fernandes Tavares deLeonel, Edson DenisCosta Filho, Raimundo Nogueira da2015-10-20T20:56:08Z2015-10-20T20:56:08Z2012SOUSA, D. F. T. Dissipação no modelo Fermi-Ulam. 2012. 131 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.http://www.repositorio.ufc.br/handle/riufc/13628In this work, we revisit the Fermi accelerator model, also known as Fermi-Ulam model. This model consists of a classical particle of unitary mass wich is confined to bounce between two rigid walls. One of them is fixed and the other one is assumed to move periodically in time. The particle collisions with the walls are assumed to be elastic. The description of the dynamic is made everytime the particle collides with the moving wall, so that we know the particle’s time and velocity at each collision needed to describe the dynamic of the system. Two versions for this model are studied: the complete and the simplified versions. In the simplified version, two walls of the model are assumed to be fixed. The Fermi-Ulam model is a conservative model because it preserves area of the phase space. Our analytical and numerical results for this conservative model are presented and discussed. Some dynamical properties for a particle suffering the action of a drag force are obtained for a dissipative Fermi-Ulam model. The dissipation is introduced via a viscous drag force, like a gas, wich is assumed to be proportional to any power of the velocity, F = −ηV γ . The dynamics of the models are described by two dimensional nonlinear mappings obtained via the solution of the second Newtons’ law of motion. We prove analytically that the decay of high energy is given by a continued fraction wich recovers the following expressions: (i) linear for γ = 1, (ii) exponential for γ = 2 and (iii) second degree polynomial type for γ = 1.5. For any value of γ, the numerical results shows a polynomial behavior for the velocity decay. Our results are discussed for both the complete and simplified versions. The phase spaces and the basin of attraction for some values of γ are obtained. Complementing our studies on this dissipative version of the Fermi-Ulam model, a mixed model was proposed. In this model, one particle travels through two different media. It started in a medium with no dissipation lets say vacuum and at some point it enters a region with a dissipative medium. The dissipation is also introduced by a viscous drag force, such that F = −ηV γ . In particular, for the study of the mixed model we use γ = 1 and γ = 2. The system is characterized by the ratio of the two medium length ξ. We show that there is a smooth transition of the velocity regime with ξ. We construct the phase spaces for the complete and simplified versions of the models. For the limiting cases, ξ = 0 or ξ = 1, the system behaves like one medium only.Neste trabalho, revisitamos o modelo do acelerador de Fermi, também conhecido como modelo Fermi-Ulam. Este modelo consiste de uma partícula clássica de massa unitária que está confinada e colidindo elasticamente entre duas paredes rígidas, uma delas sendo fixa e a outra dependente do tempo. A descrição da dinâmica é feita todas as vezes que a partícula colide com a parede móvel, de modo que o conhecimento dos valores da velocidade da partícula e do tempo no instante da colisão descrevem toda a dinâmica. Duas versões para este modelo são estudadas: a versão completa e a versão simplificada. Na versão simplificada, as duas paredes do modelo são assumidas como sendo fixas. O modelo Fermi-Ulam é um modelo conservativo, pois preserva medida do espaço de fases. Nossos resultados analíticos e numéricos para este modelo conservativo são apresentados e discutidos. Algumas propriedades dinâmicas para uma partícula sofrendo a ação de uma força de arrasto são obtidas para um modelo Fermi-Ulam dissipativo. A dissipação é introduzida via uma força de arrasto viscoso, como um gás, que é assumida como sendo proporcional `a velocidade elevada a um expoente γ, F = −ηV^{ γ}. As dinâmicas dos modelos são descritas por mapeamentos bidimensionais não-lineares obtidos via solucões da segunda lei de Newton. Nós provamos, analiticamente, que o decaimento para altas energias é dado por uma fração continuada que recupera as seguintes expressões: (i) linear para γ = 1; (ii) exponencial para γ = 2 e (iii) um polinômio de segundo grau para γ = 1.5. Os resultados numéricos mostram um comportamento polinomial para o decaimento da velocidade. Nossos resultados são discutidos para as versões completa e simplificada dos modelos. Os espaços de fases e as bacias de atração para alguns valores de γ são obtidos. Complementando nossos estudos sobre esta versão dissipativa do modelo Fermi-Ulam, um modelo misto também é proposto. Neste modelo, a partícula viaja através de dois meios distintos. Sua dinâmica é iniciada em um meio sem dissipação, digamos, um vácuo e em algum ponto ela entra em uma região dissipativa. A dissipação também é introduzida por uma força de arrasto viscoso, tal que F = −ηV^{γ}. Em particular, para o estudo do modelo misto utilizamos γ = 1 e γ = 2. O sistema é caracterizado pela relação de dois meios de comprimento λ. Nós mostramos que existe uma transição suave do regime de velocidade conforme λ é variado. Construímos os espaços de fases para as versões completa e simplificada dos modelos. Para os casos limites, λ=0 ou λ=1, o sistema comporta-se como um único meio.FísicaSistemas dinâmicosModelo Fermi-UlamCaos quânticoDissipação no modelo Fermi-Ulaminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/13628/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52ORIGINAL2012_tese_dftsousa.pdf2012_tese_dftsousa.pdfapplication/pdf14704159http://repositorio.ufc.br/bitstream/riufc/13628/1/2012_tese_dftsousa.pdfbf2d7f19ae743de453cdf3921e42e4fbMD51riufc/136282019-07-31 10:36:52.564oai:repositorio.ufc.br:riufc/13628w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-07-31T13:36:52Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Dissipação no modelo Fermi-Ulam
title Dissipação no modelo Fermi-Ulam
spellingShingle Dissipação no modelo Fermi-Ulam
Sousa, Danila Fernandes Tavares de
Física
Sistemas dinâmicos
Modelo Fermi-Ulam
Caos quântico
title_short Dissipação no modelo Fermi-Ulam
title_full Dissipação no modelo Fermi-Ulam
title_fullStr Dissipação no modelo Fermi-Ulam
title_full_unstemmed Dissipação no modelo Fermi-Ulam
title_sort Dissipação no modelo Fermi-Ulam
author Sousa, Danila Fernandes Tavares de
author_facet Sousa, Danila Fernandes Tavares de
author_role author
dc.contributor.co-advisor.none.fl_str_mv Leonel, Edson Denis
dc.contributor.author.fl_str_mv Sousa, Danila Fernandes Tavares de
dc.contributor.advisor1.fl_str_mv Costa Filho, Raimundo Nogueira da
contributor_str_mv Costa Filho, Raimundo Nogueira da
dc.subject.por.fl_str_mv Física
Sistemas dinâmicos
Modelo Fermi-Ulam
Caos quântico
topic Física
Sistemas dinâmicos
Modelo Fermi-Ulam
Caos quântico
description In this work, we revisit the Fermi accelerator model, also known as Fermi-Ulam model. This model consists of a classical particle of unitary mass wich is confined to bounce between two rigid walls. One of them is fixed and the other one is assumed to move periodically in time. The particle collisions with the walls are assumed to be elastic. The description of the dynamic is made everytime the particle collides with the moving wall, so that we know the particle’s time and velocity at each collision needed to describe the dynamic of the system. Two versions for this model are studied: the complete and the simplified versions. In the simplified version, two walls of the model are assumed to be fixed. The Fermi-Ulam model is a conservative model because it preserves area of the phase space. Our analytical and numerical results for this conservative model are presented and discussed. Some dynamical properties for a particle suffering the action of a drag force are obtained for a dissipative Fermi-Ulam model. The dissipation is introduced via a viscous drag force, like a gas, wich is assumed to be proportional to any power of the velocity, F = −ηV γ . The dynamics of the models are described by two dimensional nonlinear mappings obtained via the solution of the second Newtons’ law of motion. We prove analytically that the decay of high energy is given by a continued fraction wich recovers the following expressions: (i) linear for γ = 1, (ii) exponential for γ = 2 and (iii) second degree polynomial type for γ = 1.5. For any value of γ, the numerical results shows a polynomial behavior for the velocity decay. Our results are discussed for both the complete and simplified versions. The phase spaces and the basin of attraction for some values of γ are obtained. Complementing our studies on this dissipative version of the Fermi-Ulam model, a mixed model was proposed. In this model, one particle travels through two different media. It started in a medium with no dissipation lets say vacuum and at some point it enters a region with a dissipative medium. The dissipation is also introduced by a viscous drag force, such that F = −ηV γ . In particular, for the study of the mixed model we use γ = 1 and γ = 2. The system is characterized by the ratio of the two medium length ξ. We show that there is a smooth transition of the velocity regime with ξ. We construct the phase spaces for the complete and simplified versions of the models. For the limiting cases, ξ = 0 or ξ = 1, the system behaves like one medium only.
publishDate 2012
dc.date.issued.fl_str_mv 2012
dc.date.accessioned.fl_str_mv 2015-10-20T20:56:08Z
dc.date.available.fl_str_mv 2015-10-20T20:56:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, D. F. T. Dissipação no modelo Fermi-Ulam. 2012. 131 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/13628
identifier_str_mv SOUSA, D. F. T. Dissipação no modelo Fermi-Ulam. 2012. 131 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
url http://www.repositorio.ufc.br/handle/riufc/13628
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/13628/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/13628/1/2012_tese_dftsousa.pdf
bitstream.checksum.fl_str_mv 8c4401d3d14722a7ca2d07c782a1aab3
bf2d7f19ae743de453cdf3921e42e4fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793303440850944