Supporting change-prone class prediction

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Melo, Cristiano Sousa
Orientador(a): Monteiro Filho, José Maria da Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/53477
Resumo: During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach.
id UFC-7_d38638046db71c134825e165c08f430a
oai_identifier_str oai:repositorio.ufc.br:riufc/53477
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Melo, Cristiano SousaMonteiro Filho, José Maria da Silva2020-08-18T11:16:03Z2020-08-18T11:16:03Z2020MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/53477During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach.Durante o desenvolvimento e a manutenabilidade de um software, alterações podem ocorrer devido a novos recursos, correções de bugs, refatoração de código ou avanços tecnológicos. Nesse contexto, a predição de classe propensa a mudanças pode ser muito útil para orientar a equipe de manutenção, pois é possível concentrar esforços na melhoria da qualidade desses trechos de código e torná-los mais flexíveis para mudanças futuras. Neste trabalho, propusemos um guideline para o problema de predição de classe propensa a mudança, que lida com um conjunto de estratégias para melhorar a qualidade dos modelos preditivos. Além disso, propusemos duas estruturas de dados que levam em consideração as dependências temporais entre essas mudanças, chamadas abordagens concatenadas e recorrentes. Eles também são chamados de abordagens dinâmicas, em contraste com o conceito estático existente do estado da arte. Nossos resultados mostraram que as abordagens dinâmicas tiveram uma Área Sob a Curva (AUC) melhor do que a abordagem estática.GuidelineChange-prone class predictionRecurrent algorithmsTime-seriesSupporting change-prone class predictioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_dis_csmelo.pdf2020_dis_csmelo.pdfapplication/pdf805321http://repositorio.ufc.br/bitstream/riufc/53477/1/2020_dis_csmelo.pdf8a5a104a43001ecbf7ebd33d6cee162cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81978http://repositorio.ufc.br/bitstream/riufc/53477/2/license.txt4247602db8c5bb0eb5b2dc93ccdf9494MD52riufc/534772020-08-18 08:16:04.668oai:repositorio.ufc.br:riufc/53477TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkENCg0KQW8gYWNlaXRhciBlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIChvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3JpYSkgZG8gZG9jdW1lbnRvIHF1ZSBlc3TDoSBzZW5kbyBkZXBvc2l0YWRvOg0KDQoxLiBEZWNsYXJhIHF1ZTogDQphKSBvIGRvY3VtZW50byDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWw7DQpiKSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIHByaXZpbMOpZ2lvcyBtZW5jaW9uYWRvcyBuZXN0YSBsaWNlbsOnYTsNCmMpIG8gZGVww7NzaXRvIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCBwZWxvIG1lbm9zIHF1ZSBzZWphIGRvIHNldSBjb25oZWNpbWVudG8sIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZTsNCmQpIGNhc28gbyBkb2N1bWVudG8gY29udGVuaGEgbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MsIHF1ZSBvYnRldmUgYXV0b3JpemHDp8OjbyBkbyBhdXRvciBvdSBkZXRlbnRvciBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvcyBwcml2aWzDqWdpb3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYTsNCmUpIG8gbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSB2aW5jdWxhZG8gYW8ocykgbm9tZShzKSBkZSBzZXUocykgcmVzcGVjdGl2byhzKSBkZXRlbnRvcihlcyksIHNlamEgbm8gdGV4dG8gb3UgZW0gb3V0cmEgcGFydGUgZG8gY29udGXDumRvOyBlDQpmKSBjYXNvIG8gZG9jdW1lbnRvIHNlamEgcmVzdWx0YWRvIGRlIHRyYWJhbGhvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gb3Ugw7NyZ8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgcXVlIHNhdGlzZmV6IHF1YWxxdWVyIGRpcmVpdG8gZGUgcmV2aXPDo28gb3Ugb3V0cm9zIGNvbXByb21pc3NvcyByZXF1ZXJpZG9zIHBlbG9zIHJlc3BlY3Rpdm9zIGNvbnRyYXRvcyBvdSBhY29yZG9zLg0KDQoyLiBPdXRvcmdhIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGU6DQphKSByZXByb2R1emlyLCBhbHRlcmFyIG8gZm9ybWF0bywgZSBvdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGFxdWkgZGVwb3NpdGFkbzsNCmIpIGVtIG1laW8gaW1wcmVzc28gb3UgZWxldHLDtG5pY28sIG91IGVtIHF1YWxxdWVyIG3DrWRpYSwgaW5jbHVzaXZlIMOhdWRpbyBlIHbDrWRlbyBwYXJhIGZpbnMgZGUgZGl2dWxnYcOnw6NvOw0KYykgY29udmVydGVyIG8gZG9jdW1lbnRvIGRlcG9zaXRhZG8sIHNlbSBhbHRlcmFyIHNldSBjb250ZcO6ZG8sIHBhcmEgcXVhbHF1ZXIgbcOtZGlhIG91IGZvcm1hdG8sIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvIGRlIHNldSBjb250ZcO6ZG87IGUNCmQpIG1hbnRlciBtYWlzIHVtYSBjw7NwaWEgZGVzc2UgZm9ybWF0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFja3VwIGUgcHJlc2VydmHDp8OjbyBlbSBmb3JtYXRvIGRpZ2l0YWwuDQoNCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc2V1IG5vbWUgY29tbyBhdXRvciBvdSBwcm9wcmlldMOhcmlvIGRlc3NlIGRvY3VtZW50byBlIG7Do28gZmFyw6EgbmVuaHVtIGFsdGVyYcOnw6NvLCBhbMOpbSBkbyBwZXJtaXRvIHBvciBlc3RhIGxpY2Vuw6dhLg0KDQpFbSBjYXNvIGRlIGTDunZpZGFzIG5vc3NvIGNvbnRhdG8gw6k6IHJlcG9zaXTDs3Jpb0B1ZmMuYnINCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-18T11:16:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Supporting change-prone class prediction
title Supporting change-prone class prediction
spellingShingle Supporting change-prone class prediction
Melo, Cristiano Sousa
Guideline
Change-prone class prediction
Recurrent algorithms
Time-series
title_short Supporting change-prone class prediction
title_full Supporting change-prone class prediction
title_fullStr Supporting change-prone class prediction
title_full_unstemmed Supporting change-prone class prediction
title_sort Supporting change-prone class prediction
author Melo, Cristiano Sousa
author_facet Melo, Cristiano Sousa
author_role author
dc.contributor.author.fl_str_mv Melo, Cristiano Sousa
dc.contributor.advisor1.fl_str_mv Monteiro Filho, José Maria da Silva
contributor_str_mv Monteiro Filho, José Maria da Silva
dc.subject.por.fl_str_mv Guideline
Change-prone class prediction
Recurrent algorithms
Time-series
topic Guideline
Change-prone class prediction
Recurrent algorithms
Time-series
description During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-08-18T11:16:03Z
dc.date.available.fl_str_mv 2020-08-18T11:16:03Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/53477
identifier_str_mv MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/53477
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/53477/1/2020_dis_csmelo.pdf
http://repositorio.ufc.br/bitstream/riufc/53477/2/license.txt
bitstream.checksum.fl_str_mv 8a5a104a43001ecbf7ebd33d6cee162c
4247602db8c5bb0eb5b2dc93ccdf9494
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793372803104768