Supporting change-prone class prediction
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/53477 |
Resumo: | During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach. |
| id |
UFC-7_d38638046db71c134825e165c08f430a |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/53477 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Melo, Cristiano SousaMonteiro Filho, José Maria da Silva2020-08-18T11:16:03Z2020-08-18T11:16:03Z2020MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/53477During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach.Durante o desenvolvimento e a manutenabilidade de um software, alterações podem ocorrer devido a novos recursos, correções de bugs, refatoração de código ou avanços tecnológicos. Nesse contexto, a predição de classe propensa a mudanças pode ser muito útil para orientar a equipe de manutenção, pois é possível concentrar esforços na melhoria da qualidade desses trechos de código e torná-los mais flexíveis para mudanças futuras. Neste trabalho, propusemos um guideline para o problema de predição de classe propensa a mudança, que lida com um conjunto de estratégias para melhorar a qualidade dos modelos preditivos. Além disso, propusemos duas estruturas de dados que levam em consideração as dependências temporais entre essas mudanças, chamadas abordagens concatenadas e recorrentes. Eles também são chamados de abordagens dinâmicas, em contraste com o conceito estático existente do estado da arte. Nossos resultados mostraram que as abordagens dinâmicas tiveram uma Área Sob a Curva (AUC) melhor do que a abordagem estática.GuidelineChange-prone class predictionRecurrent algorithmsTime-seriesSupporting change-prone class predictioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_dis_csmelo.pdf2020_dis_csmelo.pdfapplication/pdf805321http://repositorio.ufc.br/bitstream/riufc/53477/1/2020_dis_csmelo.pdf8a5a104a43001ecbf7ebd33d6cee162cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81978http://repositorio.ufc.br/bitstream/riufc/53477/2/license.txt4247602db8c5bb0eb5b2dc93ccdf9494MD52riufc/534772020-08-18 08:16:04.668oai:repositorio.ufc.br:riufc/53477TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkENCg0KQW8gYWNlaXRhciBlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIChvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3JpYSkgZG8gZG9jdW1lbnRvIHF1ZSBlc3TDoSBzZW5kbyBkZXBvc2l0YWRvOg0KDQoxLiBEZWNsYXJhIHF1ZTogDQphKSBvIGRvY3VtZW50byDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWw7DQpiKSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIHByaXZpbMOpZ2lvcyBtZW5jaW9uYWRvcyBuZXN0YSBsaWNlbsOnYTsNCmMpIG8gZGVww7NzaXRvIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCBwZWxvIG1lbm9zIHF1ZSBzZWphIGRvIHNldSBjb25oZWNpbWVudG8sIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZTsNCmQpIGNhc28gbyBkb2N1bWVudG8gY29udGVuaGEgbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MsIHF1ZSBvYnRldmUgYXV0b3JpemHDp8OjbyBkbyBhdXRvciBvdSBkZXRlbnRvciBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvcyBwcml2aWzDqWdpb3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYTsNCmUpIG8gbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSB2aW5jdWxhZG8gYW8ocykgbm9tZShzKSBkZSBzZXUocykgcmVzcGVjdGl2byhzKSBkZXRlbnRvcihlcyksIHNlamEgbm8gdGV4dG8gb3UgZW0gb3V0cmEgcGFydGUgZG8gY29udGXDumRvOyBlDQpmKSBjYXNvIG8gZG9jdW1lbnRvIHNlamEgcmVzdWx0YWRvIGRlIHRyYWJhbGhvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gb3Ugw7NyZ8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgcXVlIHNhdGlzZmV6IHF1YWxxdWVyIGRpcmVpdG8gZGUgcmV2aXPDo28gb3Ugb3V0cm9zIGNvbXByb21pc3NvcyByZXF1ZXJpZG9zIHBlbG9zIHJlc3BlY3Rpdm9zIGNvbnRyYXRvcyBvdSBhY29yZG9zLg0KDQoyLiBPdXRvcmdhIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGU6DQphKSByZXByb2R1emlyLCBhbHRlcmFyIG8gZm9ybWF0bywgZSBvdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGFxdWkgZGVwb3NpdGFkbzsNCmIpIGVtIG1laW8gaW1wcmVzc28gb3UgZWxldHLDtG5pY28sIG91IGVtIHF1YWxxdWVyIG3DrWRpYSwgaW5jbHVzaXZlIMOhdWRpbyBlIHbDrWRlbyBwYXJhIGZpbnMgZGUgZGl2dWxnYcOnw6NvOw0KYykgY29udmVydGVyIG8gZG9jdW1lbnRvIGRlcG9zaXRhZG8sIHNlbSBhbHRlcmFyIHNldSBjb250ZcO6ZG8sIHBhcmEgcXVhbHF1ZXIgbcOtZGlhIG91IGZvcm1hdG8sIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvIGRlIHNldSBjb250ZcO6ZG87IGUNCmQpIG1hbnRlciBtYWlzIHVtYSBjw7NwaWEgZGVzc2UgZm9ybWF0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFja3VwIGUgcHJlc2VydmHDp8OjbyBlbSBmb3JtYXRvIGRpZ2l0YWwuDQoNCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc2V1IG5vbWUgY29tbyBhdXRvciBvdSBwcm9wcmlldMOhcmlvIGRlc3NlIGRvY3VtZW50byBlIG7Do28gZmFyw6EgbmVuaHVtIGFsdGVyYcOnw6NvLCBhbMOpbSBkbyBwZXJtaXRvIHBvciBlc3RhIGxpY2Vuw6dhLg0KDQpFbSBjYXNvIGRlIGTDunZpZGFzIG5vc3NvIGNvbnRhdG8gw6k6IHJlcG9zaXTDs3Jpb0B1ZmMuYnINCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-18T11:16:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Supporting change-prone class prediction |
| title |
Supporting change-prone class prediction |
| spellingShingle |
Supporting change-prone class prediction Melo, Cristiano Sousa Guideline Change-prone class prediction Recurrent algorithms Time-series |
| title_short |
Supporting change-prone class prediction |
| title_full |
Supporting change-prone class prediction |
| title_fullStr |
Supporting change-prone class prediction |
| title_full_unstemmed |
Supporting change-prone class prediction |
| title_sort |
Supporting change-prone class prediction |
| author |
Melo, Cristiano Sousa |
| author_facet |
Melo, Cristiano Sousa |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Melo, Cristiano Sousa |
| dc.contributor.advisor1.fl_str_mv |
Monteiro Filho, José Maria da Silva |
| contributor_str_mv |
Monteiro Filho, José Maria da Silva |
| dc.subject.por.fl_str_mv |
Guideline Change-prone class prediction Recurrent algorithms Time-series |
| topic |
Guideline Change-prone class prediction Recurrent algorithms Time-series |
| description |
During the development and maintenance of software, changes can occur due to new features, bug fixes, code refactoring, or technological advancements. In this context, change-prone class prediction can be very useful in guiding the maintenance team, since it is possible to focus efforts on improving the quality of these code snippets and make them more flexible for future changes. In this work, we have proposed a guideline to support the change-prone class prediction problem, which deals with a set of hardworking strategies to improve the quality of the predictive models. Besides, we have proposed two data structures that take the temporal dependencies between these changes into account, called Concatenated and Recurrent approaches. They are also called dynamic approaches, in contrast with the conventional state-of-art static approach. Our experimental results have shown that the proposed dynamic approaches have had a better Area Under the Curve (AUC) over the static approach. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-08-18T11:16:03Z |
| dc.date.available.fl_str_mv |
2020-08-18T11:16:03Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/53477 |
| identifier_str_mv |
MELO, Cristiano Sousa. Supporting change-prone class prediction. 2020. 57 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2020. |
| url |
http://www.repositorio.ufc.br/handle/riufc/53477 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/53477/1/2020_dis_csmelo.pdf http://repositorio.ufc.br/bitstream/riufc/53477/2/license.txt |
| bitstream.checksum.fl_str_mv |
8a5a104a43001ecbf7ebd33d6cee162c 4247602db8c5bb0eb5b2dc93ccdf9494 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793372803104768 |