Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Amaral, Julyanne Braga Cruz
Orientador(a): Lopes, Fernando Bezerra
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/72839
Resumo: Remote sensing is a technique that allows obtaining information about different targets without physical contact. This device is potentially used in agricultural and environmental activities, promoting more efficient monitoring and management of activities. Monitoring the nutritional status of plants is essential for the early identification of nutrients that can limit the growth and production of crops, as well as monitoring water resources is of paramount importance for decision making and environmental management. Both monitoring are commonly performed through laboratory analysis, through procedures that take time, maintenance cost and high waste production. Thus, the present work aimed to quantify, by means of reflectance spectroscopy, the contents of leaf nutrients of the cowpea crop and the limnological variables chlorophyll-a, total suspended solids and transparency, as an alternative to laboratory analyses. The cowpea crop was analyzed in three phenological stages: V4, R6 and R9. Leaf samples were collected for radiometric readings and quantification by wet nitro-perchloric digestion. The acquisition of water samples was carried out in the Caxitoré, General Sampaio and Pereira de Miranda reservoirs, where the collection was carried out at 3, 4 and 5 points, respectively, in parallel with the water collection, hyperspectral data were obtained by in situ radiometry. The analyzes of plant tissues and water samples were performed in the laboratory and the acquisition of radiometric data was carried out using the FieldSpec 3 Hi-Res spectroradiometer. Three models were built for each variable, based on: simple correlation, 2D correlation (band ratio) and Partial Least Squares Regression (PLSR). The most significant spectral variables for the simple correlation and 2D correlation models were selected by the highest value of r, while for the construction of the PLSR models, the Stepwise method was used. 70 and 30% of the data were used for the construction and validation of the prediction models, respectively. In order to validate the results, statistical metrics were applied: determination coefficients, RMSE and RPD. The PLSR predictive models presented better performances when compared to the simple and 2D correlation, both for leaf nutrients and for limnological variables, presenting adjusted R² of 0.97, 0.23, 025 and 0.23 and RPD = 1.23, 0.25, 6.09 and 2.38 for the predictions of P, K, Ca, and Zn, respectively and adjusted R² of 0.23, 025 and 0.23 and RPD = 0.25, 6.09 and 2.38 for chlorophyll-a, SST and transparency, respectively. It was possible to observe that the most significant wavelengths in the prediction of leaf nutrients are in the visible region, while for the limnological variables they are in the near infrared (NIR) regions.
id UFC-7_d813a92de61d69638c320e0ff9df651e
oai_identifier_str oai:repositorio.ufc.br:riufc/72839
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Amaral, Julyanne Braga CruzLopes, Fernando Bezerra2023-06-15T12:31:27Z2023-06-15T12:31:27Z2022AMARAL, Julyanne Braga Cruz. Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto. 2022. 104 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/72839Remote sensing is a technique that allows obtaining information about different targets without physical contact. This device is potentially used in agricultural and environmental activities, promoting more efficient monitoring and management of activities. Monitoring the nutritional status of plants is essential for the early identification of nutrients that can limit the growth and production of crops, as well as monitoring water resources is of paramount importance for decision making and environmental management. Both monitoring are commonly performed through laboratory analysis, through procedures that take time, maintenance cost and high waste production. Thus, the present work aimed to quantify, by means of reflectance spectroscopy, the contents of leaf nutrients of the cowpea crop and the limnological variables chlorophyll-a, total suspended solids and transparency, as an alternative to laboratory analyses. The cowpea crop was analyzed in three phenological stages: V4, R6 and R9. Leaf samples were collected for radiometric readings and quantification by wet nitro-perchloric digestion. The acquisition of water samples was carried out in the Caxitoré, General Sampaio and Pereira de Miranda reservoirs, where the collection was carried out at 3, 4 and 5 points, respectively, in parallel with the water collection, hyperspectral data were obtained by in situ radiometry. The analyzes of plant tissues and water samples were performed in the laboratory and the acquisition of radiometric data was carried out using the FieldSpec 3 Hi-Res spectroradiometer. Three models were built for each variable, based on: simple correlation, 2D correlation (band ratio) and Partial Least Squares Regression (PLSR). The most significant spectral variables for the simple correlation and 2D correlation models were selected by the highest value of r, while for the construction of the PLSR models, the Stepwise method was used. 70 and 30% of the data were used for the construction and validation of the prediction models, respectively. In order to validate the results, statistical metrics were applied: determination coefficients, RMSE and RPD. The PLSR predictive models presented better performances when compared to the simple and 2D correlation, both for leaf nutrients and for limnological variables, presenting adjusted R² of 0.97, 0.23, 025 and 0.23 and RPD = 1.23, 0.25, 6.09 and 2.38 for the predictions of P, K, Ca, and Zn, respectively and adjusted R² of 0.23, 025 and 0.23 and RPD = 0.25, 6.09 and 2.38 for chlorophyll-a, SST and transparency, respectively. It was possible to observe that the most significant wavelengths in the prediction of leaf nutrients are in the visible region, while for the limnological variables they are in the near infrared (NIR) regions.O sensoriamento remoto é uma técnica que permite a obtenção de informações a respeito de diversos alvos sem que haja contato físico. Este artifício é potencialmente utilizado em atividades agrícolas e ambientais, promovendo monitoramento e gestão mais eficiente das atividades. O monitoramento do estado nutricional das plantas é fundamental para a identificação precoce dos nutrientes que podem limitar o crescimento e produção das culturas, assim como realizar o monitoramento dos recursos hídricos é de suma importância para tomadas de decisões e gestão ambiental. Ambos os monitoramentos são comumente realizados através de análises laboratoriais, por meio de procedimentos que levam tempo, custo de manutenção e alta produção de resíduos. Desse modo, o presente trabalho objetivou quantificar, por meio da espectroscopia de reflectância, os teores de nutrientes foliares da cultura do feijão- caupi e das variáveis limnológicas clorofila-a, sólidos suspensos totais e transparência, como alternativa às análises laboratoriais. A cultura do feijão-caupi foi analisada em três estágios fenológicos: V4, R6 e R9. Foram coletadas amostras foliares para realização das leituras radiométricas e quantificações por digestão via úmida nitro-perclórica. A aquisição das amostras de água foi realizada nos reservatórios Caxitoré, General Sampaio e Pereira de Miranda, onde foi feita a coleta em 3, 4 e 5 pontos, respectivamente, em cada reservatório. Em paralelo às coletas de água, foi efetuada a obtenção de dados hiperespectrais por radiometria in situ. As análises de tecidos vegetais e amostras de água foram realizadas em laboratório e a aquisição de dados radiométricos foi conduzida utilizando-se o espectrorradiômetro FieldSpec 3 Hi-Res. Foram construídos três modelos para cada variável, a partir de: correlação simples, correlação 2D (razão de bandas) e regressão por Mínimos Quadrados Parciais (PLSR). As variáveis espectrais mais significativas para os modelos de correlação simples e correlação 2D foram selecionadas pelo maior valor de r, enquanto que para a construção dos modelos PLSR, utilizou-se o método Stepwise. Foram utilizados 70 e 30% dos dados para a construção e validação dos modelos de predição, respectivamente. A fim de validar os resultados, foram aplicadas as métricas estatísticas: coeficientes de determinação, RMSE e RPD. Os modelos preditivos de PLSR apresentaram melhores performances se comparado à correlação simples e 2D, tanto para os nutrientes foliares quanto para as variáveis limnológicas, apresentando R² ajustado de 0,97, 0,23, 025 e 0,23 e RPD = 1,23, 0,25, 6,09 e 2,38 para as predições de P, K, Ca, e Zn, respectivamente e R² ajustado de 0,23, 025 e 0,23 e RPD = 0,25, 6,09 e 2,38 para clorofila-a, SST e transparência, respectivamente. Foi possível observar que os comprimentos de ondas mais significativos na predição de nutrientes foliares estão na região do visível, enquanto que para as variáveis limnológicas estão regiões de infravermelho próximo (NIR).Sensoriamento remotoEspectrorradiometriaMonitoramentoVigna unguiculataEstimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remotoEstimation of vegetation and water quality parameters using remote sensinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2022_dis_jbcamaral2022_dis_jbcamaralDissertação Julyanne Braga Cruz Amaralapplication/pdf3907088http://repositorio.ufc.br/bitstream/riufc/72839/3/2022_dis_jbcamaral28030ac4145f04b632849b84a37e1f9fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/72839/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/728392023-06-15 09:32:00.1oai:repositorio.ufc.br:riufc/72839Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-06-15T12:32Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
dc.title.en.pt_BR.fl_str_mv Estimation of vegetation and water quality parameters using remote sensing
title Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
spellingShingle Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
Amaral, Julyanne Braga Cruz
Sensoriamento remoto
Espectrorradiometria
Monitoramento
Vigna unguiculata
title_short Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
title_full Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
title_fullStr Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
title_full_unstemmed Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
title_sort Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto
author Amaral, Julyanne Braga Cruz
author_facet Amaral, Julyanne Braga Cruz
author_role author
dc.contributor.author.fl_str_mv Amaral, Julyanne Braga Cruz
dc.contributor.advisor1.fl_str_mv Lopes, Fernando Bezerra
contributor_str_mv Lopes, Fernando Bezerra
dc.subject.por.fl_str_mv Sensoriamento remoto
Espectrorradiometria
Monitoramento
Vigna unguiculata
topic Sensoriamento remoto
Espectrorradiometria
Monitoramento
Vigna unguiculata
description Remote sensing is a technique that allows obtaining information about different targets without physical contact. This device is potentially used in agricultural and environmental activities, promoting more efficient monitoring and management of activities. Monitoring the nutritional status of plants is essential for the early identification of nutrients that can limit the growth and production of crops, as well as monitoring water resources is of paramount importance for decision making and environmental management. Both monitoring are commonly performed through laboratory analysis, through procedures that take time, maintenance cost and high waste production. Thus, the present work aimed to quantify, by means of reflectance spectroscopy, the contents of leaf nutrients of the cowpea crop and the limnological variables chlorophyll-a, total suspended solids and transparency, as an alternative to laboratory analyses. The cowpea crop was analyzed in three phenological stages: V4, R6 and R9. Leaf samples were collected for radiometric readings and quantification by wet nitro-perchloric digestion. The acquisition of water samples was carried out in the Caxitoré, General Sampaio and Pereira de Miranda reservoirs, where the collection was carried out at 3, 4 and 5 points, respectively, in parallel with the water collection, hyperspectral data were obtained by in situ radiometry. The analyzes of plant tissues and water samples were performed in the laboratory and the acquisition of radiometric data was carried out using the FieldSpec 3 Hi-Res spectroradiometer. Three models were built for each variable, based on: simple correlation, 2D correlation (band ratio) and Partial Least Squares Regression (PLSR). The most significant spectral variables for the simple correlation and 2D correlation models were selected by the highest value of r, while for the construction of the PLSR models, the Stepwise method was used. 70 and 30% of the data were used for the construction and validation of the prediction models, respectively. In order to validate the results, statistical metrics were applied: determination coefficients, RMSE and RPD. The PLSR predictive models presented better performances when compared to the simple and 2D correlation, both for leaf nutrients and for limnological variables, presenting adjusted R² of 0.97, 0.23, 025 and 0.23 and RPD = 1.23, 0.25, 6.09 and 2.38 for the predictions of P, K, Ca, and Zn, respectively and adjusted R² of 0.23, 025 and 0.23 and RPD = 0.25, 6.09 and 2.38 for chlorophyll-a, SST and transparency, respectively. It was possible to observe that the most significant wavelengths in the prediction of leaf nutrients are in the visible region, while for the limnological variables they are in the near infrared (NIR) regions.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-06-15T12:31:27Z
dc.date.available.fl_str_mv 2023-06-15T12:31:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AMARAL, Julyanne Braga Cruz. Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto. 2022. 104 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2022.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/72839
identifier_str_mv AMARAL, Julyanne Braga Cruz. Estimativa de parâmetros de vegetação e de qualidade de água usando sensoriamento remoto. 2022. 104 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal do Ceará, Fortaleza, 2022.
url http://www.repositorio.ufc.br/handle/riufc/72839
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/72839/3/2022_dis_jbcamaral
http://repositorio.ufc.br/bitstream/riufc/72839/4/license.txt
bitstream.checksum.fl_str_mv 28030ac4145f04b632849b84a37e1f9f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793345001160704