Exportação concluída — 

Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Oliveira, Antônio Edinardo de
Orientador(a): Barros, Abdênago Alves de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/8108
Resumo: In this paper we consider n-dimensional hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1). Characterize the hypersurfaces given by products of spheres whose size is n, the unit sphere S ^ (n +1) and show that there is more compact hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1) that are not congruent itself. In particular, prove that M is an n-dimensional hypersurface (n> 3) complete with buckle locally flat accordingly constant scalar n (n-1) on the unit sphere S r ^ (n +1) is greater than r a pre-established and two results are proven value, and the other one involving isometries of existence, when are S satisfy certain conditions, where S is the square of the standard is second fundamental form of M.
id UFC-7_f4799807d1c34b8f7d2c59cd372d264c
oai_identifier_str oai:repositorio.ufc.br:riufc/8108
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Oliveira, Antônio Edinardo deBarros, Abdênago Alves de2014-05-20T11:17:05Z2014-05-20T11:17:05Z2013OLIVEIRA, Antônio Edinardo de. Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1). 2013. 63 f. Dissertação (Mestrado em Matemática) ) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013.http://www.repositorio.ufc.br/handle/riufc/8108In this paper we consider n-dimensional hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1). Characterize the hypersurfaces given by products of spheres whose size is n, the unit sphere S ^ (n +1) and show that there is more compact hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1) that are not congruent itself. In particular, prove that M is an n-dimensional hypersurface (n> 3) complete with buckle locally flat accordingly constant scalar n (n-1) on the unit sphere S r ^ (n +1) is greater than r a pre-established and two results are proven value, and the other one involving isometries of existence, when are S satisfy certain conditions, where S is the square of the standard is second fundamental form of M.Neste trabalho consideraremos hipersuperfícies n-dimensionais com curvaturas escalar constante na esfera unitária S^(n+1). Caracterizaremos as hipersuperfícies dadas por produtos de esferas, cuja dimensão é n, na esfera unitária S^(n+1) e mostraremos que existe várias hipersuperfícies compactas com curvaturas escalar constante na esfera unitária S^(n+1) que não são congruentes entre si. Em particular, provaremos que se M é uma hipersuperfície n-dimensional (n>3) completa, localmente conformemente plana com curvatura escalar constante n(n-1)r na esfera unitária S^(n+1), então r é maior do que um valor pré-estabelecido e são provados dois resultados, um envolvendo isometrias e o outro de existência, quando r e S satisfazem determinadas condições, onde S é o quadrado da norma se segunda forma fundamental de M.Geometria diferencialHipersuperfíciesCurvaturaGeometriaUma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)A characterization of the product Sk (cos θ) x Sn-k (sin θ) in the Euclidean sphere S^(n +1)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2013_dis_aeoliveira.pdf2013_dis_aeoliveira.pdfapplication/pdf337777http://repositorio.ufc.br/bitstream/riufc/8108/1/2013_dis_aeoliveira.pdff03ae8eeda83c77ff564a8cef0460918MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/8108/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/81082019-01-04 09:12:48.753oai:repositorio.ufc.br:riufc/8108w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T12:12:48Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
dc.title.en.pt_BR.fl_str_mv A characterization of the product Sk (cos θ) x Sn-k (sin θ) in the Euclidean sphere S^(n +1)
title Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
spellingShingle Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
Oliveira, Antônio Edinardo de
Geometria diferencial
Hipersuperfícies
Curvatura
Geometria
title_short Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
title_full Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
title_fullStr Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
title_full_unstemmed Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
title_sort Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)
author Oliveira, Antônio Edinardo de
author_facet Oliveira, Antônio Edinardo de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Antônio Edinardo de
dc.contributor.advisor1.fl_str_mv Barros, Abdênago Alves de
contributor_str_mv Barros, Abdênago Alves de
dc.subject.por.fl_str_mv Geometria diferencial
Hipersuperfícies
Curvatura
Geometria
topic Geometria diferencial
Hipersuperfícies
Curvatura
Geometria
description In this paper we consider n-dimensional hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1). Characterize the hypersurfaces given by products of spheres whose size is n, the unit sphere S ^ (n +1) and show that there is more compact hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1) that are not congruent itself. In particular, prove that M is an n-dimensional hypersurface (n> 3) complete with buckle locally flat accordingly constant scalar n (n-1) on the unit sphere S r ^ (n +1) is greater than r a pre-established and two results are proven value, and the other one involving isometries of existence, when are S satisfy certain conditions, where S is the square of the standard is second fundamental form of M.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2014-05-20T11:17:05Z
dc.date.available.fl_str_mv 2014-05-20T11:17:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Antônio Edinardo de. Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1). 2013. 63 f. Dissertação (Mestrado em Matemática) ) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/8108
identifier_str_mv OLIVEIRA, Antônio Edinardo de. Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1). 2013. 63 f. Dissertação (Mestrado em Matemática) ) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013.
url http://www.repositorio.ufc.br/handle/riufc/8108
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/8108/1/2013_dis_aeoliveira.pdf
http://repositorio.ufc.br/bitstream/riufc/8108/2/license.txt
bitstream.checksum.fl_str_mv f03ae8eeda83c77ff564a8cef0460918
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793176053547008