Caracterização de perfis de comportamento de equipes em League of Legends.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: NASCIMENTO JUNIOR, Fernando Felix do.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
LoL
Link de acesso: https://dspace.sti.ufcg.edu.br/handle/riufcg/1617
Resumo: Apesar da crescente popularidade dos esportes eletrônicos (eSports), ainda há uma escassez de trabalhos acadêmicos que exploram o comportamento de jogo das equipes. Compreender as características que ajudam discriminar entre equipes bem-sucedidas e malsucedidas poderia ajudar as equipes a melhorar suas estratégias, como determinar métricas de desempenho a serem alcançadas. Nesta dissertação, identificamos e caracterizamos padrões de comportamento de equipes com base nos dados de histórico de partidas de League of Legends, um eSport muito popular. Ao aplicar métodos de mineração de dados, como aprendizado da máquina e análise estatística, agrupamos o desempenho das equipes e investigamos para cada grupo como e em que medida essas características influenciam o sucesso e fracasso das equipes. Alguns grupos são mais propensos a terem equipes mais vencedoras do que outros, os resultados do nosso estudo ajudaram a descobrir as características que estão associadas a essa propensão e permitiram modelar métricas de desempenho de perfis de equipe bem sucedidas e malsucedidas. Encontramos ao todo 7 perfis, que foram categorizados em quatro grandes níveis em termos de proporção de equipes vencedoras: Fraco, Mais ou Menos, Bom e Top.
id UFCG_353ba808f7567d09a692f66392a8a000
oai_identifier_str oai:dspace.sti.ufcg.edu.br:riufcg/1617
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str
spelling Caracterização de perfis de comportamento de equipes em League of Legends.League of LegendsLoLComportamento de equipesMineração de dadosAnálise de jogosJogos MOBADesempenho das EquipeseSportsTeam BehaviorData MiningMOBA GamesTeam PerformanceCiência da ComputaçãoApesar da crescente popularidade dos esportes eletrônicos (eSports), ainda há uma escassez de trabalhos acadêmicos que exploram o comportamento de jogo das equipes. Compreender as características que ajudam discriminar entre equipes bem-sucedidas e malsucedidas poderia ajudar as equipes a melhorar suas estratégias, como determinar métricas de desempenho a serem alcançadas. Nesta dissertação, identificamos e caracterizamos padrões de comportamento de equipes com base nos dados de histórico de partidas de League of Legends, um eSport muito popular. Ao aplicar métodos de mineração de dados, como aprendizado da máquina e análise estatística, agrupamos o desempenho das equipes e investigamos para cada grupo como e em que medida essas características influenciam o sucesso e fracasso das equipes. Alguns grupos são mais propensos a terem equipes mais vencedoras do que outros, os resultados do nosso estudo ajudaram a descobrir as características que estão associadas a essa propensão e permitiram modelar métricas de desempenho de perfis de equipe bem sucedidas e malsucedidas. Encontramos ao todo 7 perfis, que foram categorizados em quatro grandes níveis em termos de proporção de equipes vencedoras: Fraco, Mais ou Menos, Bom e Top.Despite the increasing popularity of electronic sports (eSports), there is still a scarcity of academic works exploring the playing behavior of teams. Understanding the features that help to discriminate between successful and unsuccessful teams would help teams improving their strategies, such as determine performance metrics to reach. In this dissertation, we identify and characterize team behavior patterns based on historical matches data from League of Legends, a very popular eSport. By applying methods from data mining, such as machine learning and statistical analysis, we clustered teams’ performance and investigate for each cluster how and to what extent these features have an influence on teams’ success and failure. Some clusters are more likely to have winning teams than others, the results of our study helped to discover the characteristics that are associated with this predisposition and allowed us to define performance metrics of successful and unsuccessful team profiles. At all, we found 7 profiles in which were categorized into four big levels in terms of winning team proportion: Weak, So-So, Good and Top.CapesUniversidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGMARINHO, Leandro Balby.MARINHO, L. B.http://lattes.cnpq.br/3728312501032061ANDRADE, Nazareno Ferreira de.PEREIRA, Eanes Torres.COUTINHO, Luciano Reis.NASCIMENTO JUNIOR, Fernando Felix do.2017-12-152018-08-31T19:40:20Z2018-08-312018-08-31T19:40:20Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://dspace.sti.ufcg.edu.br/handle/riufcg/1617NASCIMENTO JUNIOR, F. F. do. Caracterização de perfis de comportamento de equipes em League of Legends. 2017. 62 f. (Dissertação de Mestrado em Ciência da Computação) Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2017. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1617porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2025-07-24T06:21:26Zoai:dspace.sti.ufcg.edu.br:riufcg/1617Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512025-07-24T06:21:26Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Caracterização de perfis de comportamento de equipes em League of Legends.
title Caracterização de perfis de comportamento de equipes em League of Legends.
spellingShingle Caracterização de perfis de comportamento de equipes em League of Legends.
NASCIMENTO JUNIOR, Fernando Felix do.
League of Legends
LoL
Comportamento de equipes
Mineração de dados
Análise de jogos
Jogos MOBA
Desempenho das Equipes
eSports
Team Behavior
Data Mining
MOBA Games
Team Performance
Ciência da Computação
title_short Caracterização de perfis de comportamento de equipes em League of Legends.
title_full Caracterização de perfis de comportamento de equipes em League of Legends.
title_fullStr Caracterização de perfis de comportamento de equipes em League of Legends.
title_full_unstemmed Caracterização de perfis de comportamento de equipes em League of Legends.
title_sort Caracterização de perfis de comportamento de equipes em League of Legends.
author NASCIMENTO JUNIOR, Fernando Felix do.
author_facet NASCIMENTO JUNIOR, Fernando Felix do.
author_role author
dc.contributor.none.fl_str_mv MARINHO, Leandro Balby.
MARINHO, L. B.
http://lattes.cnpq.br/3728312501032061
ANDRADE, Nazareno Ferreira de.
PEREIRA, Eanes Torres.
COUTINHO, Luciano Reis.
dc.contributor.author.fl_str_mv NASCIMENTO JUNIOR, Fernando Felix do.
dc.subject.por.fl_str_mv League of Legends
LoL
Comportamento de equipes
Mineração de dados
Análise de jogos
Jogos MOBA
Desempenho das Equipes
eSports
Team Behavior
Data Mining
MOBA Games
Team Performance
Ciência da Computação
topic League of Legends
LoL
Comportamento de equipes
Mineração de dados
Análise de jogos
Jogos MOBA
Desempenho das Equipes
eSports
Team Behavior
Data Mining
MOBA Games
Team Performance
Ciência da Computação
description Apesar da crescente popularidade dos esportes eletrônicos (eSports), ainda há uma escassez de trabalhos acadêmicos que exploram o comportamento de jogo das equipes. Compreender as características que ajudam discriminar entre equipes bem-sucedidas e malsucedidas poderia ajudar as equipes a melhorar suas estratégias, como determinar métricas de desempenho a serem alcançadas. Nesta dissertação, identificamos e caracterizamos padrões de comportamento de equipes com base nos dados de histórico de partidas de League of Legends, um eSport muito popular. Ao aplicar métodos de mineração de dados, como aprendizado da máquina e análise estatística, agrupamos o desempenho das equipes e investigamos para cada grupo como e em que medida essas características influenciam o sucesso e fracasso das equipes. Alguns grupos são mais propensos a terem equipes mais vencedoras do que outros, os resultados do nosso estudo ajudaram a descobrir as características que estão associadas a essa propensão e permitiram modelar métricas de desempenho de perfis de equipe bem sucedidas e malsucedidas. Encontramos ao todo 7 perfis, que foram categorizados em quatro grandes níveis em termos de proporção de equipes vencedoras: Fraco, Mais ou Menos, Bom e Top.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-15
2018-08-31T19:40:20Z
2018-08-31
2018-08-31T19:40:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://dspace.sti.ufcg.edu.br/handle/riufcg/1617
NASCIMENTO JUNIOR, F. F. do. Caracterização de perfis de comportamento de equipes em League of Legends. 2017. 62 f. (Dissertação de Mestrado em Ciência da Computação) Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2017. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1617
url https://dspace.sti.ufcg.edu.br/handle/riufcg/1617
identifier_str_mv NASCIMENTO JUNIOR, F. F. do. Caracterização de perfis de comportamento de equipes em League of Legends. 2017. 62 f. (Dissertação de Mestrado em Ciência da Computação) Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2017. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1617
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1851784600724963328