Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Ana Maria Alves da lattes
Orientador(a): Euzébio, Rodrigo Donizete lattes
Banca de defesa: Euzébio, Rodrigo Donizete, Roberto, Luci Any Francisco, Martins, Ricardo Miranda, Andrade, Kamila da Silva, Oliveira, Regilene Delazari dos Santos
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/0013000008s1j
Idioma: eng
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12415
Resumo: In this thesis, periodic trajectories in planar discontinuous piecewise linear systems with a nonregular switching line are studied. We provide sharp upper bounds of one or two limit cycles for certain classes of the model considered. We also establish the stability and hyperbolicity of these limit cycles. In addition, we provide examples reaching one and two limit cycles for these classes. We perform the global analysis of a representative model through bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories, and tangential ones. We also provide some results addressing the coexistence of periodic trajectories. We studied Fast-Slow systems with nonregular switching line with a new approach. This study allows proving that a specific sliding periodic trajectory is in fact a homoclinic trajectory. This homoclinic trajectory arises from a bifurcation of sliding limit cycles that are not topologically equivalents. We propose the theory of piecewise rotated vector fields with the goal of understanding how the trajectories of two families of rotated vector fields behave as the same parameter is varied. In this context, we prove the non-intersection theorem for closed periodic trajectories for piecewise rotated vector fields.
id UFG-2_06cc066eeff65951c307d7336963bdd5
oai_identifier_str oai:repositorio.bc.ufg.br:tede/12415
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Euzébio, Rodrigo Donizetehttp://lattes.cnpq.br/9213320273714493Euzébio, Rodrigo DonizeteRoberto, Luci Any FranciscoMartins, Ricardo MirandaAndrade, Kamila da SilvaOliveira, Regilene Delazari dos Santoshttp://lattes.cnpq.br/1133726890707075Silva, Ana Maria Alves da2022-11-07T15:21:18Z2022-11-07T15:21:18Z2022-09-30ALVES, A. M. Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties. 2022. 112 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.http://repositorio.bc.ufg.br/tede/handle/tede/12415ark:/38995/0013000008s1jIn this thesis, periodic trajectories in planar discontinuous piecewise linear systems with a nonregular switching line are studied. We provide sharp upper bounds of one or two limit cycles for certain classes of the model considered. We also establish the stability and hyperbolicity of these limit cycles. In addition, we provide examples reaching one and two limit cycles for these classes. We perform the global analysis of a representative model through bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories, and tangential ones. We also provide some results addressing the coexistence of periodic trajectories. We studied Fast-Slow systems with nonregular switching line with a new approach. This study allows proving that a specific sliding periodic trajectory is in fact a homoclinic trajectory. This homoclinic trajectory arises from a bifurcation of sliding limit cycles that are not topologically equivalents. We propose the theory of piecewise rotated vector fields with the goal of understanding how the trajectories of two families of rotated vector fields behave as the same parameter is varied. In this context, we prove the non-intersection theorem for closed periodic trajectories for piecewise rotated vector fields.Nesta tese, estudamos trajetórias periódicas em sistemas lineares planares suaves por partes com uma variedade de descontinuidade não-regular. Fornecemos cotas superiores para ciclos limites para uma classe do modelo considerado, a cota é de um ou dois ciclos dependendo das condições consideradas. Estabelecemos a estabilidade e hiperbolicidade desses ciclos limites fornecemos exemplos que atingem a cota de um e dois ciclos limite para as classes consideradas. Realizamos uma análise global de um modelo representativo através da teoria da bifurcação para analisar o nascimento de ciclos limites, trajetórias periódicas deslizantes e tangenciais. Fornecemos alguns resultados abordando a coexistência de trajetórias periódicas. Estudamos sistemas Fast-Slow com a variedade de descontinuidade não-regular com uma nova abordagem. Este estudo permite provar que uma trajetória periódica de deslize específica é na verdade uma trajetória periódica homoclínica que surge a partir da bifurcação de ciclos limites deslizantes que não são topologicamente equivalentes. Propomos a teoria de campos de vetores rodados por partes com o objetivo de entender como as trajetórias de duas famílias de campos de vetores rodados se comportam quando um mesmo parâmetro é variado. Neste contexto, provamos o teorema de não interseção para os campos considerados.Fundação de Amparo à Pesquisa do Estado de GoiásengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessCampos de vetores suaves por partesTrajetórias periódicasSistemas rápido-lentoCampos de vetores rodados por partesTeoria de bifurcaçãoPiecewise smooth vector fieldsPeriodic trajectoriesFast-slow systemsPiecewise rotated vector fieldsBifurcation theoryCIENCIAS EXATAS E DA TERRA::MATEMATICALimit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated propertiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis70500500500500271873reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/8978afbf-472c-4a41-ae51-c5d5e7110407/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/9f029311-4b7c-487c-9b31-6d652eada4ac/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTese - Ana Maria Alves da Silva - 2022.pdfTese - Ana Maria Alves da Silva - 2022.pdfapplication/pdf7375235http://repositorio.bc.ufg.br/tede/bitstreams/86e1333d-5934-4279-ad8d-bf0746eb0700/download53693f5dd452396bd823bc5c9deb12a3MD53tede/124152022-11-07 12:21:19.169http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12415http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342022-11-07T15:21:19Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
title Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
spellingShingle Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
Silva, Ana Maria Alves da
Campos de vetores suaves por partes
Trajetórias periódicas
Sistemas rápido-lento
Campos de vetores rodados por partes
Teoria de bifurcação
Piecewise smooth vector fields
Periodic trajectories
Fast-slow systems
Piecewise rotated vector fields
Bifurcation theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
title_full Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
title_fullStr Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
title_full_unstemmed Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
title_sort Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties
author Silva, Ana Maria Alves da
author_facet Silva, Ana Maria Alves da
author_role author
dc.contributor.advisor1.fl_str_mv Euzébio, Rodrigo Donizete
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9213320273714493
dc.contributor.referee1.fl_str_mv Euzébio, Rodrigo Donizete
dc.contributor.referee2.fl_str_mv Roberto, Luci Any Francisco
dc.contributor.referee3.fl_str_mv Martins, Ricardo Miranda
dc.contributor.referee4.fl_str_mv Andrade, Kamila da Silva
dc.contributor.referee5.fl_str_mv Oliveira, Regilene Delazari dos Santos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1133726890707075
dc.contributor.author.fl_str_mv Silva, Ana Maria Alves da
contributor_str_mv Euzébio, Rodrigo Donizete
Euzébio, Rodrigo Donizete
Roberto, Luci Any Francisco
Martins, Ricardo Miranda
Andrade, Kamila da Silva
Oliveira, Regilene Delazari dos Santos
dc.subject.por.fl_str_mv Campos de vetores suaves por partes
Trajetórias periódicas
Sistemas rápido-lento
Campos de vetores rodados por partes
Teoria de bifurcação
topic Campos de vetores suaves por partes
Trajetórias periódicas
Sistemas rápido-lento
Campos de vetores rodados por partes
Teoria de bifurcação
Piecewise smooth vector fields
Periodic trajectories
Fast-slow systems
Piecewise rotated vector fields
Bifurcation theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Piecewise smooth vector fields
Periodic trajectories
Fast-slow systems
Piecewise rotated vector fields
Bifurcation theory
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this thesis, periodic trajectories in planar discontinuous piecewise linear systems with a nonregular switching line are studied. We provide sharp upper bounds of one or two limit cycles for certain classes of the model considered. We also establish the stability and hyperbolicity of these limit cycles. In addition, we provide examples reaching one and two limit cycles for these classes. We perform the global analysis of a representative model through bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories, and tangential ones. We also provide some results addressing the coexistence of periodic trajectories. We studied Fast-Slow systems with nonregular switching line with a new approach. This study allows proving that a specific sliding periodic trajectory is in fact a homoclinic trajectory. This homoclinic trajectory arises from a bifurcation of sliding limit cycles that are not topologically equivalents. We propose the theory of piecewise rotated vector fields with the goal of understanding how the trajectories of two families of rotated vector fields behave as the same parameter is varied. In this context, we prove the non-intersection theorem for closed periodic trajectories for piecewise rotated vector fields.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-11-07T15:21:18Z
dc.date.available.fl_str_mv 2022-11-07T15:21:18Z
dc.date.issued.fl_str_mv 2022-09-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALVES, A. M. Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties. 2022. 112 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/12415
dc.identifier.dark.fl_str_mv ark:/38995/0013000008s1j
identifier_str_mv ALVES, A. M. Limit cycles in planar piecewise smooth systems having non-regular switches, time scales or rotated properties. 2022. 112 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.
ark:/38995/0013000008s1j
url http://repositorio.bc.ufg.br/tede/handle/tede/12415
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 70
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 187
dc.relation.sponsorship.fl_str_mv 3
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/8978afbf-472c-4a41-ae51-c5d5e7110407/download
http://repositorio.bc.ufg.br/tede/bitstreams/9f029311-4b7c-487c-9b31-6d652eada4ac/download
http://repositorio.bc.ufg.br/tede/bitstreams/86e1333d-5934-4279-ad8d-bf0746eb0700/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
8a4605be74aa9ea9d79846c1fba20a33
53693f5dd452396bd823bc5c9deb12a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536698238861312