Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Peixoto, Franciele Parreira lattes
Orientador(a): Brito, Daniel
Banca de defesa: Terribile, Levi Carina, Duarte, Leandro, Brito, Daniel, Diniz Filho, José Alexandre Felizola
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/00130000075b1
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ecologia e Evolução (ICB)
Departamento: Instituto de Ciências Biológicas - ICB (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/3151
Resumo: Aim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the purpose to better understand the mechanisms underlying current biodiversity patterns. We also aimed to use a metric that allows partitioning PBD into two components to distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g. speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the distance-decay relationship of phylogenetic beta diversity to provide more information about factors that act in the PBD patterns. Location: global, delimited by biogeographic regions. Methods: Using the global distribution of bats and a supertree available for most species, we calculated PBD using the complement of phylosor index. We used a null model to test if two assemblages were more or less phylogenetically dissimilar than expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant components, providing information about two factors that produce differences in assemblage phylogenetic composition. We also performed a Mantel analysis to analyze the distance-decay patterns of PBD and its two components. Results: The most striking difference in PBD was found between the Old and New World “phylogenetic composition”. We found the lowest values of PBD between adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong geographical structure in PBD. These values were even lower when the turnover component was analyzed, demonstrating the differences in the role of regional processes in shaping regional diversity. On the other hand, we found out that for some adjacent regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by chance and comparatively different from expected by the distance decay relationship. This value remained high, even when we analyzed just the PBD turnover component. This demonstrates that although these regions are relatively close in space, there are other factors driving phylogenetic differences between them (e.g. an environmental barrier). Main conclusions: Our analyses revealed differences in the expected patterns of bat PBD among regions, suggesting that at broad scales, besides the effects of distance and geographic barriers, we also have to consider the importance of environmental gradients when studying the phylogenetic origin of bat assemblages.
id UFG-2_73a75fe53f8032ffae5dc46daaabc51b
oai_identifier_str oai:repositorio.bc.ufg.br:tede/3151
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Brito, DanielDiniz Filho, José Alexandre FelizolaTerribile, Levi CarinaDuarte, LeandroBrito, DanielDiniz Filho, José Alexandre Felizolahttp://lattes.cnpq.br/3270814551206587Peixoto, Franciele Parreira2014-09-23T21:58:54Z2013-03-18PEIXOTO, Franciele Parreira. Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação. 2013. 68 f. Dissertação (Mestrado em Ecologia e Evolução) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3151ark:/38995/00130000075b1Aim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the purpose to better understand the mechanisms underlying current biodiversity patterns. We also aimed to use a metric that allows partitioning PBD into two components to distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g. speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the distance-decay relationship of phylogenetic beta diversity to provide more information about factors that act in the PBD patterns. Location: global, delimited by biogeographic regions. Methods: Using the global distribution of bats and a supertree available for most species, we calculated PBD using the complement of phylosor index. We used a null model to test if two assemblages were more or less phylogenetically dissimilar than expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant components, providing information about two factors that produce differences in assemblage phylogenetic composition. We also performed a Mantel analysis to analyze the distance-decay patterns of PBD and its two components. Results: The most striking difference in PBD was found between the Old and New World “phylogenetic composition”. We found the lowest values of PBD between adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong geographical structure in PBD. These values were even lower when the turnover component was analyzed, demonstrating the differences in the role of regional processes in shaping regional diversity. On the other hand, we found out that for some adjacent regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by chance and comparatively different from expected by the distance decay relationship. This value remained high, even when we analyzed just the PBD turnover component. This demonstrates that although these regions are relatively close in space, there are other factors driving phylogenetic differences between them (e.g. an environmental barrier). Main conclusions: Our analyses revealed differences in the expected patterns of bat PBD among regions, suggesting that at broad scales, besides the effects of distance and geographic barriers, we also have to consider the importance of environmental gradients when studying the phylogenetic origin of bat assemblages.A abordagem mais comum no uso de PD (diversidade filogenética) para conservação é selecionar locais com maior diversidade evolutiva. Essa estratégia parte do pressuposto de que locais com maior quantidade de PD indicam maior potencial para respostas evolutivas a mudanças ambientais futuras. No entanto, há um crescente debate sobre se as prioridades de conservação deveriam também ser voltadas para locais com baixo valor de PD, que podem representar centros de diversificação de espécies ou “berçários de diversidade”. Alguns trabalhos têm testado se os hotspots globais de biodiversidade, baseados em riqueza, também representam locais de desproporcional concentração de história evolutiva. Nós testamos aqui se os hotspots contêm mais, menos ou igual diversidade filogenética (PD) que o esperado por uma amostragem ao acaso de espécies em qualquer posição na filogenia, para a ordem Chiroptera. Buscamos responder qual a real contribuição de cada hotspot para a conservação de padrões e processos relacionados à diversidade filogenética. Nós utilizamos uma supertree disponível para a maioria das espécies da ordem, e dados de distribuição das espécies. Nós calculamos o PD para cada hotspot separadamente e utilizamos um modelo nulo para obter os valores esperados dado a riqueza. De 34 hotspots, apenas um apresentou maior PD do que o esperado, treze apresentaram valores menores e o restante valores iguais ao esperado. Nós demonstramos que a relação entre PD e riqueza varia entre regiões biogeográficas, de modo que não há como fazer generalizações acerca da contribuição dos hotspots para a conservação de diversidade evolutiva. De modo geral nossos resultados demonstram que devido ao fato da história evolutiva variar regionalmente, também devem ser estabelecidas as prioridades de conservação nessa escala.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/8351/Peixoto%2c%20Franciele%20Parreira-Disserta%c3%a7%c3%a3o-2013.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ecologia e Evolução (ICB)UFGBrasilInstituto de Ciências Biológicas - ICB (RG)Brooks T.M., Mittermeier R. a, Da Fonseca G. a B., Gerlach J., Hoffmann M., Lamoreux J.F., Mittermeier C.G., Pilgrim J.D., & Rodrigues a S.L. (2006) Global biodiversity conservation priorities. Science (New York, N.Y.), 313, 58–61. Carvalho S.B., Brito J.C., Crespo E.J., & Possingham H.P. (2011) Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Diversity and Distributions, 17, 408–421. Cowling R.M. & Pressey R.L. (2001) Rapid plant diversification : Planning for an. PNAS, 98, 5452–5457. Cox C.B. (2000) Plate Tectonics , Seaways and Climate in the Historical Biogeography of Mammals. North, 95, 509–516. Davies T.J. & Buckley L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2414–25. Davies T.J., Fritz S.A., Grenyer R., Orme C.D.L., Bielby J., Bininda-emonds O.R.P., Cardillo M., Jones K.E., Gittleman J.L., Mace G.M., & Purvis A. (2008) Phylogenetic trees and the future of mammalian biodiversity. PNAS, 105, 11556– 11563. Davis E.B., Koo M.S., Conroy C., Patton J.L., & Moritz C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology, 17, 120–38. Erwin T.L. (1991) An Evolutionary Basis for Conservation Strategies. Science, 253, 750–752. Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. Fjeldsa J. (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiversity and Conservation, 3, 207–226. Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., Van der Bank M., Reeves G., Hedderson T. a J., & Savolainen V. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–60. Hawkins B. a., McCain C.M., Davies T.J., Buckley L.B., Anacker B.L., Cornell H. V., Damschen E.I., Grytnes J.-A., Harrison S., Holt R.D., Kraft N.J.B., & Stephens P.R. (2012) Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39, 825–841. IUCN (2011) Available at: http://www.iucnredlist.org. Jones K.E., Bininda-Emonds O.R.P., & Gittleman J.L. (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution, 59, 2243–2255. Jones K.E., Purvis A., MacLarnon A., Bininda-Emonds O.R.P., & Simmons N.B. (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological reviews of the Cambridge Philosophical Society, 77, 223–59. Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., Blomberg S.P., & Webb C.O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England), 26, 1463–4. Kraft N.J.B., Baldwin B.G., & Ackerly D.D. (2010) Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 16, 403–413. Lessard J.-P., Borregaard M.K., Fordyce J. a, Rahbek C., Weiser M.D., Dunn R.R., & Sanders N.J. (2012) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings. Biological sciences / The Royal Society, 279, 266–74. Mace G.M., Gittleman J.L., & Purvis A. (2003) Preserving the Tree of Life. Science, 300, 1707 – 1709. Mittermeier R.A., Gil P.R., Hoffman M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., & Da Fonseca G.A.B. (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. Conservation International, Washington, D.C. Myers N. (2003) Biodiversity Hotspots Revisited. BioScience, 53, 916–917. Myers N., Mittermeier R. a, Mittermeier C.G., Da Fonseca G. a, & Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–8. Nee S. & May R.M. (1997) Extinction and the Loss of Evolutionary History. Science, 278, 692–694. Pimm S.L. & Raven P. (2000) Extinction by numbers. Nature, 403, 843–845. Polasky S., Csuti B., Vossler C.A., & Meyers S.M. (2001) A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97, 99–105. Purvis a. (2000) Nonrandom Extinction and the Loss of Evolutionary History. Science, 288, 328–330. Rodrigues A.S.L. & Gaston K.J. (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103– 111. Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2011) Using phylogenies in conservation: new perspectives. Biology letters, 8, 692–694. Russell G.J., Brooks T.M., Kinney M.M.M.C., & Anderson C.G. (1998) Present and Future Taxonomic Selectivity in Bird and Mammal Extinctions. Conservation biology, 12, 1365–1376. Safi K., Cianciaruso M. V, Loyola R.D., Brito D., Armour-Marshall K., & Diniz-Filho J.A.F. (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2536–44. Sechrest W., Brooks T.M., Da Fonseca G. a B., Konstant W.R., Mittermeier R. a, Purvis A., Rylands A.B., & Gittleman J.L. (2002) Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 99, 2067–71. Simmons N.B. (2006) Order Chiroptera. Mammal species of the world: a taxonomic and geographic reference (ed. by D.E. Wilson and D.M. Reeder), Smithsonian Institution Press, Washington. Spathelf M. & Waite T. a. (2007) Will hotspots conserve extra primate and carnivore evolutionary history? Diversity and Distributions, 13, 746–751. Vane-Wright R.I., Humphries C.J., & Williams P.H. (1991) What to Protect ? Systematics and the Agony of Choice. Biological Conservation, 55, 235–254. Weir J.T. & Schluter D. (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science (New York, N.Y.), 315, 1574–6. Whittaker R.J., Araújo M.B., Jepson P., Ladle R.J., Watson J.E.M., & Willis K.J. (2005) Conservation Biogeography : assessment and prospect. Diversity and Distributions, 11, 3–23. Wiens J.J., Graham C.H., Moen D.S., Smith S. a, & Reeder T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American naturalist, 168, 579–96.-5361682850774351271600600600600-3872772117827373404-16345593859312446972075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDiversidade filogenéticaBiogeografiaChiropteraHotspots de biodiversidadeFilobetadiversidadePhylogenetic diversityBiogeographyBiodiversity hotspotsEnvironmental gradientsBiogeographical regionsNestednessresultantPhylosorTurnoverCIENCIAS BIOLOGICAS::BIOLOGIA GERALDiversidade evolutiva de morcegos: padrões geográficos e aplicações em conservaçãoEvolutive diversity of bats: geographic patterns and conservation applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/08c2889a-2a20-4c6f-9f8f-d165c1042f29/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/48955e16-de30-46ce-a733-54a54b65199a/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/2e479b2e-b9a6-4306-a156-402653cabcb1/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/661d9ccc-5fd6-4841-88d9-fff51eea5aa2/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALPeixoto, Franciele Parreira-Dissertação-2013.pdfPeixoto, Franciele Parreira-Dissertação-2013.pdfDissertaçãoapplication/pdf995120http://repositorio.bc.ufg.br/tede/bitstreams/0df2c898-6046-4b0b-9486-f366f809a2e2/download365969ffce47a58af2a011eb0370ed04MD55TEXTPeixoto, Franciele Parreira-Dissertação-2013.pdf.txtPeixoto, Franciele Parreira-Dissertação-2013.pdf.txtExtracted Texttext/plain104444http://repositorio.bc.ufg.br/tede/bitstreams/f2a950fb-30cc-4f8d-b1d6-8ac98cee9947/download78a9f943a8d8f1d92cdaad9ea019b764MD56THUMBNAILPeixoto, Franciele Parreira-Dissertação-2013.pdf.jpgPeixoto, Franciele Parreira-Dissertação-2013.pdf.jpgGenerated Thumbnailimage/jpeg2389http://repositorio.bc.ufg.br/tede/bitstreams/624180e0-02ef-4e9f-8fe5-41c33a563747/download6c88241fed00d4ddb601c32215687677MD57tede/31512014-09-24 03:01:28.896http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3151http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342014-09-24T06:01:28Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
dc.title.alternative.eng.fl_str_mv Evolutive diversity of bats: geographic patterns and conservation applications
title Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
spellingShingle Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
Peixoto, Franciele Parreira
Diversidade filogenética
Biogeografia
Chiroptera
Hotspots de biodiversidade
Filobetadiversidade
Phylogenetic diversity
Biogeography
Biodiversity hotspots
Environmental gradients
Biogeographical regions
Nestednessresultant
Phylosor
Turnover
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
title_short Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
title_full Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
title_fullStr Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
title_full_unstemmed Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
title_sort Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação
author Peixoto, Franciele Parreira
author_facet Peixoto, Franciele Parreira
author_role author
dc.contributor.advisor1.fl_str_mv Brito, Daniel
dc.contributor.advisor-co1.fl_str_mv Diniz Filho, José Alexandre Felizola
dc.contributor.referee1.fl_str_mv Terribile, Levi Carina
dc.contributor.referee2.fl_str_mv Duarte, Leandro
dc.contributor.referee3.fl_str_mv Brito, Daniel
dc.contributor.referee4.fl_str_mv Diniz Filho, José Alexandre Felizola
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3270814551206587
dc.contributor.author.fl_str_mv Peixoto, Franciele Parreira
contributor_str_mv Brito, Daniel
Diniz Filho, José Alexandre Felizola
Terribile, Levi Carina
Duarte, Leandro
Brito, Daniel
Diniz Filho, José Alexandre Felizola
dc.subject.por.fl_str_mv Diversidade filogenética
Biogeografia
Chiroptera
Hotspots de biodiversidade
Filobetadiversidade
topic Diversidade filogenética
Biogeografia
Chiroptera
Hotspots de biodiversidade
Filobetadiversidade
Phylogenetic diversity
Biogeography
Biodiversity hotspots
Environmental gradients
Biogeographical regions
Nestednessresultant
Phylosor
Turnover
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
dc.subject.eng.fl_str_mv Phylogenetic diversity
Biogeography
Biodiversity hotspots
Environmental gradients
Biogeographical regions
Nestednessresultant
Phylosor
Turnover
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
description Aim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the purpose to better understand the mechanisms underlying current biodiversity patterns. We also aimed to use a metric that allows partitioning PBD into two components to distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g. speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the distance-decay relationship of phylogenetic beta diversity to provide more information about factors that act in the PBD patterns. Location: global, delimited by biogeographic regions. Methods: Using the global distribution of bats and a supertree available for most species, we calculated PBD using the complement of phylosor index. We used a null model to test if two assemblages were more or less phylogenetically dissimilar than expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant components, providing information about two factors that produce differences in assemblage phylogenetic composition. We also performed a Mantel analysis to analyze the distance-decay patterns of PBD and its two components. Results: The most striking difference in PBD was found between the Old and New World “phylogenetic composition”. We found the lowest values of PBD between adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong geographical structure in PBD. These values were even lower when the turnover component was analyzed, demonstrating the differences in the role of regional processes in shaping regional diversity. On the other hand, we found out that for some adjacent regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by chance and comparatively different from expected by the distance decay relationship. This value remained high, even when we analyzed just the PBD turnover component. This demonstrates that although these regions are relatively close in space, there are other factors driving phylogenetic differences between them (e.g. an environmental barrier). Main conclusions: Our analyses revealed differences in the expected patterns of bat PBD among regions, suggesting that at broad scales, besides the effects of distance and geographic barriers, we also have to consider the importance of environmental gradients when studying the phylogenetic origin of bat assemblages.
publishDate 2013
dc.date.issued.fl_str_mv 2013-03-18
dc.date.accessioned.fl_str_mv 2014-09-23T21:58:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEIXOTO, Franciele Parreira. Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação. 2013. 68 f. Dissertação (Mestrado em Ecologia e Evolução) - Universidade Federal de Goiás, Goiânia, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/3151
dc.identifier.dark.fl_str_mv ark:/38995/00130000075b1
identifier_str_mv PEIXOTO, Franciele Parreira. Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação. 2013. 68 f. Dissertação (Mestrado em Ecologia e Evolução) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/00130000075b1
url http://repositorio.bc.ufg.br/tede/handle/tede/3151
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5361682850774351271
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -3872772117827373404
dc.relation.cnpq.fl_str_mv -1634559385931244697
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.relation.references.por.fl_str_mv Brooks T.M., Mittermeier R. a, Da Fonseca G. a B., Gerlach J., Hoffmann M., Lamoreux J.F., Mittermeier C.G., Pilgrim J.D., & Rodrigues a S.L. (2006) Global biodiversity conservation priorities. Science (New York, N.Y.), 313, 58–61. Carvalho S.B., Brito J.C., Crespo E.J., & Possingham H.P. (2011) Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Diversity and Distributions, 17, 408–421. Cowling R.M. & Pressey R.L. (2001) Rapid plant diversification : Planning for an. PNAS, 98, 5452–5457. Cox C.B. (2000) Plate Tectonics , Seaways and Climate in the Historical Biogeography of Mammals. North, 95, 509–516. Davies T.J. & Buckley L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2414–25. Davies T.J., Fritz S.A., Grenyer R., Orme C.D.L., Bielby J., Bininda-emonds O.R.P., Cardillo M., Jones K.E., Gittleman J.L., Mace G.M., & Purvis A. (2008) Phylogenetic trees and the future of mammalian biodiversity. PNAS, 105, 11556– 11563. Davis E.B., Koo M.S., Conroy C., Patton J.L., & Moritz C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology, 17, 120–38. Erwin T.L. (1991) An Evolutionary Basis for Conservation Strategies. Science, 253, 750–752. Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. Fjeldsa J. (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiversity and Conservation, 3, 207–226. Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., Van der Bank M., Reeves G., Hedderson T. a J., & Savolainen V. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–60. Hawkins B. a., McCain C.M., Davies T.J., Buckley L.B., Anacker B.L., Cornell H. V., Damschen E.I., Grytnes J.-A., Harrison S., Holt R.D., Kraft N.J.B., & Stephens P.R. (2012) Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39, 825–841. IUCN (2011) Available at: http://www.iucnredlist.org. Jones K.E., Bininda-Emonds O.R.P., & Gittleman J.L. (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution, 59, 2243–2255. Jones K.E., Purvis A., MacLarnon A., Bininda-Emonds O.R.P., & Simmons N.B. (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological reviews of the Cambridge Philosophical Society, 77, 223–59. Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., Blomberg S.P., & Webb C.O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England), 26, 1463–4. Kraft N.J.B., Baldwin B.G., & Ackerly D.D. (2010) Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 16, 403–413. Lessard J.-P., Borregaard M.K., Fordyce J. a, Rahbek C., Weiser M.D., Dunn R.R., & Sanders N.J. (2012) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings. Biological sciences / The Royal Society, 279, 266–74. Mace G.M., Gittleman J.L., & Purvis A. (2003) Preserving the Tree of Life. Science, 300, 1707 – 1709. Mittermeier R.A., Gil P.R., Hoffman M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., & Da Fonseca G.A.B. (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. Conservation International, Washington, D.C. Myers N. (2003) Biodiversity Hotspots Revisited. BioScience, 53, 916–917. Myers N., Mittermeier R. a, Mittermeier C.G., Da Fonseca G. a, & Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–8. Nee S. & May R.M. (1997) Extinction and the Loss of Evolutionary History. Science, 278, 692–694. Pimm S.L. & Raven P. (2000) Extinction by numbers. Nature, 403, 843–845. Polasky S., Csuti B., Vossler C.A., & Meyers S.M. (2001) A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97, 99–105. Purvis a. (2000) Nonrandom Extinction and the Loss of Evolutionary History. Science, 288, 328–330. Rodrigues A.S.L. & Gaston K.J. (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103– 111. Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2011) Using phylogenies in conservation: new perspectives. Biology letters, 8, 692–694. Russell G.J., Brooks T.M., Kinney M.M.M.C., & Anderson C.G. (1998) Present and Future Taxonomic Selectivity in Bird and Mammal Extinctions. Conservation biology, 12, 1365–1376. Safi K., Cianciaruso M. V, Loyola R.D., Brito D., Armour-Marshall K., & Diniz-Filho J.A.F. (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2536–44. Sechrest W., Brooks T.M., Da Fonseca G. a B., Konstant W.R., Mittermeier R. a, Purvis A., Rylands A.B., & Gittleman J.L. (2002) Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 99, 2067–71. Simmons N.B. (2006) Order Chiroptera. Mammal species of the world: a taxonomic and geographic reference (ed. by D.E. Wilson and D.M. Reeder), Smithsonian Institution Press, Washington. Spathelf M. & Waite T. a. (2007) Will hotspots conserve extra primate and carnivore evolutionary history? Diversity and Distributions, 13, 746–751. Vane-Wright R.I., Humphries C.J., & Williams P.H. (1991) What to Protect ? Systematics and the Agony of Choice. Biological Conservation, 55, 235–254. Weir J.T. & Schluter D. (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science (New York, N.Y.), 315, 1574–6. Whittaker R.J., Araújo M.B., Jepson P., Ladle R.J., Watson J.E.M., & Willis K.J. (2005) Conservation Biogeography : assessment and prospect. Diversity and Distributions, 11, 3–23. Wiens J.J., Graham C.H., Moen D.S., Smith S. a, & Reeder T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American naturalist, 168, 579–96.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ecologia e Evolução (ICB)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas - ICB (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/08c2889a-2a20-4c6f-9f8f-d165c1042f29/download
http://repositorio.bc.ufg.br/tede/bitstreams/48955e16-de30-46ce-a733-54a54b65199a/download
http://repositorio.bc.ufg.br/tede/bitstreams/2e479b2e-b9a6-4306-a156-402653cabcb1/download
http://repositorio.bc.ufg.br/tede/bitstreams/661d9ccc-5fd6-4841-88d9-fff51eea5aa2/download
http://repositorio.bc.ufg.br/tede/bitstreams/0df2c898-6046-4b0b-9486-f366f809a2e2/download
http://repositorio.bc.ufg.br/tede/bitstreams/f2a950fb-30cc-4f8d-b1d6-8ac98cee9947/download
http://repositorio.bc.ufg.br/tede/bitstreams/624180e0-02ef-4e9f-8fe5-41c33a563747/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
1e0094e9d8adcf16b18effef4ce7ed83
9da0b6dfac957114c6a7714714b86306
365969ffce47a58af2a011eb0370ed04
78a9f943a8d8f1d92cdaad9ea019b764
6c88241fed00d4ddb601c32215687677
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536678754222080