Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Gouvêa, Graziela Dutra Rocha
Orientador(a): Scalon, João Domingos
Banca de defesa: Muniz, Joel Augusto, Fogo, José Carlos, Cirillo, Marcelo Ângelo, Tomazella, Vera Lúcia Damasceno
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE FEDERAL DE LAVRAS
Programa de Pós-Graduação: DEX - Departamento de Ciências Exatas
Departamento: Não Informado pela instituição
País: BRASIL
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufla.br/handle/1/4301
Resumo: In some situations, we may observe that the event of interest occurs repeatedly in the same individual, such as when a patient diagnosed with cancer tends to relapse over time or when a person is repeatedly readmitted in a hospital. In this situation, it is more reasonable to suppose the existence of a relationship between times until the occurrence of events. In order to examine the association between survival times, a class of models has been studied. These are called frailty models and consider a random effect in the Cox model. Penã and Hollander (2004) proposed a new class of models, more general and flexible, that simultaneously incorporates the effect of covariates, the impact on the unit of accumulating event occurrences, the effect of latent or unobserved variables which, for each unit, endow correlation among the inter-event times, as well as the effect of performed interventions after each event occurrence.With respect to Bayesian approach, the frailty models have already been explored by many authors. By the other side, the general class of models for recurrent events has not been studied under Bayesian approach. Then, the aim of this thesis was to explore Bayesian methods for the general class of frailty models for recurrent event data analysis and also study, under this focus, the multiplicative frailty model and the Cox model. The models were compared using the selection methods AIC (Akaike information criterion) and BIC (Bayesian information criterion). The proposed methodology was applied to data of chronic renal failure from Santa Casa de Misericórdia in Lavras, MG, which was collected only for this study. The effect of covariates was studied and the individual frailties for the patients in treatment of hemodialysis were estimated. We conclude that the general class of models is important because consider, beside of effects in other models, the effect of cumulating times of recurrent events in the individuals. The application to the dataset showed the importance of both frailty terms and the parameter which measures the effect of cumulating times of recurrent events. It was showed that the model purposed by Peña and Hollander can be useful to analyse recurrent times data of hospitalization to patients in treatment of hemodialysis. In this case, it was checked that the effect of cumulating cumulating recurrent events is an important feature to predict a new hospitalization.
id UFLA_3ceee7d396d333e50b3c51219ea57d6e
oai_identifier_str oai:repositorio.ufla.br:1/4301
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling 2014-10-03T11:53:10Z2014-10-03T11:53:10Z2014-10-032010-02-22GOUVÊA, G. D. R. Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa. 2010. 137 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2010.https://repositorio.ufla.br/handle/1/4301In some situations, we may observe that the event of interest occurs repeatedly in the same individual, such as when a patient diagnosed with cancer tends to relapse over time or when a person is repeatedly readmitted in a hospital. In this situation, it is more reasonable to suppose the existence of a relationship between times until the occurrence of events. In order to examine the association between survival times, a class of models has been studied. These are called frailty models and consider a random effect in the Cox model. Penã and Hollander (2004) proposed a new class of models, more general and flexible, that simultaneously incorporates the effect of covariates, the impact on the unit of accumulating event occurrences, the effect of latent or unobserved variables which, for each unit, endow correlation among the inter-event times, as well as the effect of performed interventions after each event occurrence.With respect to Bayesian approach, the frailty models have already been explored by many authors. By the other side, the general class of models for recurrent events has not been studied under Bayesian approach. Then, the aim of this thesis was to explore Bayesian methods for the general class of frailty models for recurrent event data analysis and also study, under this focus, the multiplicative frailty model and the Cox model. The models were compared using the selection methods AIC (Akaike information criterion) and BIC (Bayesian information criterion). The proposed methodology was applied to data of chronic renal failure from Santa Casa de Misericórdia in Lavras, MG, which was collected only for this study. The effect of covariates was studied and the individual frailties for the patients in treatment of hemodialysis were estimated. We conclude that the general class of models is important because consider, beside of effects in other models, the effect of cumulating times of recurrent events in the individuals. The application to the dataset showed the importance of both frailty terms and the parameter which measures the effect of cumulating times of recurrent events. It was showed that the model purposed by Peña and Hollander can be useful to analyse recurrent times data of hospitalization to patients in treatment of hemodialysis. In this case, it was checked that the effect of cumulating cumulating recurrent events is an important feature to predict a new hospitalization.Em muitas situações há interesse em observar a ocorrência de um único tipo de falha, mais de uma vez, em cada indivíduo envolvido na análise. Nesse caso, é razoável supor a existência de associação entre tempos de ocorrência de eventos. Para considerar a existência de uma possível associação entre os tempos de sobrevivência, uma classe de modelos, denominada modelos de fragilidade, na qual um efeito aleatório é introduzido no modelo de Cox, vem sendo estudada. Peña e Hollander (2004) propuseram uma nova classe de modelos, mais geral e flexível, que incorpora simultaneamente os efeitos de covariáveis, o impacto da acumulação de tempos de ocorrências de eventos sobre o indivíduo, o efeito de variáveis latentes e o efeito das intervenções realizadas após cada ocorrência de evento. No que se refere à abordagem bayesiana, os modelos de fragilidade já foram explorados por vários autores. Por outro lado, a classe geral de modelos para eventos recorrentes ainda não foi estudada sob o enfoque bayesiano. Sendo assim, a proposta desta tese foi a utilização de métodos bayesianos para a classe geral de modelos com fragilidade para análise de dados de eventos recorrentes e também estudar, sob esse enfoque, o modelo de fragilidade multiplicativo e o modelo de Cox. Os modelos foram comparados considerando os métodos de seleção AIC (Critério de Informação de Akaike) e BIC (Critério de Informação Bayesiano). A metodologia proposta foi aplicada aos dados de Insuficiência Renal Crônica da Santa Casa de Misericórdia na cidade de Lavras, MG, os quais foram coletados exclusivamente para utilização nesta tese. Para esse conjunto de dados o efeito das covariáveis foi estudado e as fragilidades individuais para os pacientes em tratamento de Hemodiálise foram estimadas. Concluiu-se que a classe geral de modelos é importante porque considera além dos efeitos presentes nos outros modelos, o efeito da acumulação da recorrência dos eventos sobre os indivíduos. A aplicação ao conjunto de dados mostrou a importância dos termos de fragilidade e do parâmetro que mede efeito da acumulação da recorrência dos eventos sobre os indivíduos. Foi mostrado que o modelo proposto por Peña e Hollander pode ser útil para analisar dados de tempos de recorrência de hospitalizações para pacientes em tratamento de Hemodiálise. Nesse caso, foi verificado que o efeito do acumulo de recorrências de evento é um fator importante para predizer uma nova internação.Estatística e Experimentação AgropecuáriaUNIVERSIDADE FEDERAL DE LAVRASDEX - Departamento de Ciências ExatasUFLABRASILEstatísticaInferência bayesianaTeste de normalidadeHemodiáliseBayesian inferenceSurvival analysisMétodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativaBayesian methods for data analysis of recurrent events considering a general class of models with multiplicative frailtyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisScalon, João DomingosMuniz, Joel AugustoFogo, José CarlosCirillo, Marcelo ÂngeloTomazella, Vera Lúcia DamascenoGouvêa, Graziela Dutra Rochainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAORIGINALTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdfTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdfapplication/pdf4254847https://repositorio.ufla.br/bitstreams/a3971dbf-b3e9-4f73-85bd-814f7987e4cb/download403fb6c2ef9aa57356f4beed97b141daMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8953https://repositorio.ufla.br/bitstreams/716ff658-8639-4bef-8fc5-c88837cced2c/download760884c1e72224de569e74f79eb87ce3MD52falseAnonymousREADTEXTTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdf.txtTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdf.txtExtracted texttext/plain103091https://repositorio.ufla.br/bitstreams/84c49389-5b9c-487d-8929-ccf63522eff5/downloadbd6fd7cffc3a757c3e2fac5aba2bf9b6MD53falseAnonymousREADTHUMBNAILTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdf.jpgTESE_Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa.pdf.jpgGenerated Thumbnailimage/jpeg2784https://repositorio.ufla.br/bitstreams/1f4f2882-56b4-432b-96b9-27d216899412/download41dbe9293ce859596039021009f31b1cMD54falseAnonymousREAD1/43012025-10-23 20:36:19.87open.accessoai:repositorio.ufla.br:1/4301https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-10-23T23:36:19Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CmEpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50bwpsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKZW50aWRhZGUuCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zCmRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MKZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqQpiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUKbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIKb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgo=
dc.title.pt_BR.fl_str_mv Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
dc.title.alternative.pt_BR.fl_str_mv Bayesian methods for data analysis of recurrent events considering a general class of models with multiplicative frailty
title Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
spellingShingle Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
Gouvêa, Graziela Dutra Rocha
Estatística
Inferência bayesiana
Teste de normalidade
Hemodiálise
Bayesian inference
Survival analysis
title_short Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
title_full Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
title_fullStr Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
title_full_unstemmed Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
title_sort Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa
author Gouvêa, Graziela Dutra Rocha
author_facet Gouvêa, Graziela Dutra Rocha
author_role author
dc.contributor.advisor1.fl_str_mv Scalon, João Domingos
dc.contributor.referee1.fl_str_mv Muniz, Joel Augusto
Fogo, José Carlos
Cirillo, Marcelo Ângelo
Tomazella, Vera Lúcia Damasceno
dc.contributor.author.fl_str_mv Gouvêa, Graziela Dutra Rocha
contributor_str_mv Scalon, João Domingos
Muniz, Joel Augusto
Fogo, José Carlos
Cirillo, Marcelo Ângelo
Tomazella, Vera Lúcia Damasceno
dc.subject.cnpq.fl_str_mv Estatística
topic Estatística
Inferência bayesiana
Teste de normalidade
Hemodiálise
Bayesian inference
Survival analysis
dc.subject.por.fl_str_mv Inferência bayesiana
Teste de normalidade
Hemodiálise
Bayesian inference
Survival analysis
description In some situations, we may observe that the event of interest occurs repeatedly in the same individual, such as when a patient diagnosed with cancer tends to relapse over time or when a person is repeatedly readmitted in a hospital. In this situation, it is more reasonable to suppose the existence of a relationship between times until the occurrence of events. In order to examine the association between survival times, a class of models has been studied. These are called frailty models and consider a random effect in the Cox model. Penã and Hollander (2004) proposed a new class of models, more general and flexible, that simultaneously incorporates the effect of covariates, the impact on the unit of accumulating event occurrences, the effect of latent or unobserved variables which, for each unit, endow correlation among the inter-event times, as well as the effect of performed interventions after each event occurrence.With respect to Bayesian approach, the frailty models have already been explored by many authors. By the other side, the general class of models for recurrent events has not been studied under Bayesian approach. Then, the aim of this thesis was to explore Bayesian methods for the general class of frailty models for recurrent event data analysis and also study, under this focus, the multiplicative frailty model and the Cox model. The models were compared using the selection methods AIC (Akaike information criterion) and BIC (Bayesian information criterion). The proposed methodology was applied to data of chronic renal failure from Santa Casa de Misericórdia in Lavras, MG, which was collected only for this study. The effect of covariates was studied and the individual frailties for the patients in treatment of hemodialysis were estimated. We conclude that the general class of models is important because consider, beside of effects in other models, the effect of cumulating times of recurrent events in the individuals. The application to the dataset showed the importance of both frailty terms and the parameter which measures the effect of cumulating times of recurrent events. It was showed that the model purposed by Peña and Hollander can be useful to analyse recurrent times data of hospitalization to patients in treatment of hemodialysis. In this case, it was checked that the effect of cumulating cumulating recurrent events is an important feature to predict a new hospitalization.
publishDate 2010
dc.date.submitted.none.fl_str_mv 2010-02-22
dc.date.accessioned.fl_str_mv 2014-10-03T11:53:10Z
dc.date.available.fl_str_mv 2014-10-03T11:53:10Z
dc.date.issued.fl_str_mv 2014-10-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GOUVÊA, G. D. R. Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa. 2010. 137 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2010.
dc.identifier.uri.fl_str_mv https://repositorio.ufla.br/handle/1/4301
identifier_str_mv GOUVÊA, G. D. R. Métodos bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa. 2010. 137 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2010.
url https://repositorio.ufla.br/handle/1/4301
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE LAVRAS
dc.publisher.program.fl_str_mv DEX - Departamento de Ciências Exatas
dc.publisher.initials.fl_str_mv UFLA
dc.publisher.country.fl_str_mv BRASIL
publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE LAVRAS
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
bitstream.url.fl_str_mv https://repositorio.ufla.br/bitstreams/a3971dbf-b3e9-4f73-85bd-814f7987e4cb/download
https://repositorio.ufla.br/bitstreams/716ff658-8639-4bef-8fc5-c88837cced2c/download
https://repositorio.ufla.br/bitstreams/84c49389-5b9c-487d-8929-ccf63522eff5/download
https://repositorio.ufla.br/bitstreams/1f4f2882-56b4-432b-96b9-27d216899412/download
bitstream.checksum.fl_str_mv 403fb6c2ef9aa57356f4beed97b141da
760884c1e72224de569e74f79eb87ce3
bd6fd7cffc3a757c3e2fac5aba2bf9b6
41dbe9293ce859596039021009f31b1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1854947678909104128