Algorithms for solving the job rotation problem with heterogeneous workers
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Lavras
Instituto de Ciências Exatas e Tecnológicas – ICET |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
| Departamento: |
Não Informado pela instituição
|
| País: |
brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufla.br/handle/1/60315 |
Resumo: | This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines. |
| id |
UFLA_41d2681d8fcb775baa2a0ec7df56c03c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufla.br:1/60315 |
| network_acronym_str |
UFLA |
| network_name_str |
Repositório Institucional da UFLA |
| repository_id_str |
|
| spelling |
Castellucci, Pedro BelinDias, Vinicius Vitor dos SantosParreira Junior, Paulo AfonsoMoreira, Mayron César de Oliveirahttps://lattes.cnpq.br/4176652334284986Lopes, Caio de Oliveira2025-09-22T21:58:26Z2025-07-16LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025.https://repositorio.ufla.br/handle/1/60315This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines.Este estudo aborda o problema de balanceamento de linhas de produção e designação de trabalhadores em linhas de montagem com rotação de tarefas (JRALWABP). O problema em questão considera trabalhadores com heterogeneidade na execução de tarefas. O objetivo consiste em maximizar o número de tarefas distintas executadas pelos trabalhadores e minimizar o tempo de ciclo médio em relação a todos os períodos, sujeito às precedências de tarefas. Inicialmente, avaliamos duas formulações exatas de programação inteira mista (Modelos M1 e M2), considerando o tempo médio de ciclo como restrição. Embora essas formulações fossem úteis como referência, mostraram-se inviáveis para instâncias maiores, aumentando a necessidade de heurísticas robustas. Nesse contexto, desenvolvemos a estratégia denominada HAJR2, que evolui o algoritmo híbrido existente (HAJR1) por meio de um processo iterativo intercalando heurísticas como GRASP, Busca Tabu e um algoritmo genético, além da introdução da heurística Pattern Injection Local Search (PILS). Os parâmetros da Busca Tabu e do algoritmo genético foram calibrados com Irace e a execução de ambos foi feita em mesma base, assegurando comparações justas. Os experimentos em quatro famílias de instâncias mostraram que HAJR2 supera HAJR1, aumentando a variedade média de tarefas atribuídas sem afetar o tempo de ciclo, e se mostra mais resistente em instâncias com alta taxa de incompatibilidade tarefa/trabalhador. Este trabalho refina o estado da arte na programação de rotação de trabalhadores heterogêneos, oferecendo uma base prática e extensível para aplicações reais em linhas de montagem.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqTecnológicoTecnologia e produçãoODS 9: Indústria, inovação e infraestruturaODS 17: Parcerias e meios de implementaçãoUniversidade Federal de LavrasInstituto de Ciências Exatas e Tecnológicas – ICETPrograma de Pós-Graduação em Ciência da ComputaçãoUFLAbrasilAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORotação de tarefasBalanceamento de linha de produçãoTrabalhadores heterogêneosHeurísticasProgramação inteira mistaJob rotationAssembly line balancingHeterogeneous workersHeuristicsMixed-integer programmingAlgorithms for solving the job rotation problem with heterogeneous workersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAORIGINALTexto completo.pdfTexto completo.pdfapplication/pdf5149045https://repositorio.ufla.br/bitstreams/5ff1f8b7-9c27-426d-905e-26951efc819a/download4ae2e6d30f6420ff271fd534ed72a21dMD51trueAnonymousREADImpactos da pesquisa.pdfImpactos da pesquisa.pdfapplication/pdf211629https://repositorio.ufla.br/bitstreams/cbd13732-12cc-4365-af74-6e0a6195bd7a/download03bac836e61602eeb30cfcbba7e2795fMD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.ufla.br/bitstreams/c3baed0f-2b47-497d-b8c1-d5c20b89c394/download5a033ee506f3a0a175bee8fc81f0bd66MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8955https://repositorio.ufla.br/bitstreams/a660b9ef-442b-42ba-a889-c53bf8ccfa0e/downloaddc1a173fe9489e283d3a1f54f6ab2ab9MD54falseAnonymousREADTEXTTexto completo.pdf.txtTexto completo.pdf.txtExtracted texttext/plain101968https://repositorio.ufla.br/bitstreams/b9fb3caf-af37-4f19-87a6-7333eae48b3c/download0be4d43407f28976b3b7b8f169812aa4MD55falseAnonymousREADImpactos da pesquisa.pdf.txtImpactos da pesquisa.pdf.txtExtracted texttext/plain5444https://repositorio.ufla.br/bitstreams/c7dcbb74-0a56-4099-bdef-9a9e1a5776bb/downloadc142b8af0c154270edee557b46fff038MD57falseAnonymousREADTHUMBNAILTexto completo.pdf.jpgTexto completo.pdf.jpgGenerated Thumbnailimage/jpeg3096https://repositorio.ufla.br/bitstreams/81d4190a-a375-445d-8772-32e28f7f8271/download80ea37d2bdbfca25c1c696bfc1accf2eMD56falseAnonymousREADImpactos da pesquisa.pdf.jpgImpactos da pesquisa.pdf.jpgGenerated Thumbnailimage/jpeg5232https://repositorio.ufla.br/bitstreams/a8076043-1638-4d1c-8fdb-7bdb5d8db7f7/download894686616f836ca82f3a0c5825ca6240MD58falseAnonymousREAD1/603152025-10-06 18:42:47.451http://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufla.br:1/60315https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-10-06T21:42:47Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CgphKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIERlY2xhcmEgdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91ICBlbnRpZGFkZS4KCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcyBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCg== |
| dc.title.none.fl_str_mv |
Algorithms for solving the job rotation problem with heterogeneous workers |
| title |
Algorithms for solving the job rotation problem with heterogeneous workers |
| spellingShingle |
Algorithms for solving the job rotation problem with heterogeneous workers Lopes, Caio de Oliveira CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Rotação de tarefas Balanceamento de linha de produção Trabalhadores heterogêneos Heurísticas Programação inteira mista Job rotation Assembly line balancing Heterogeneous workers Heuristics Mixed-integer programming |
| title_short |
Algorithms for solving the job rotation problem with heterogeneous workers |
| title_full |
Algorithms for solving the job rotation problem with heterogeneous workers |
| title_fullStr |
Algorithms for solving the job rotation problem with heterogeneous workers |
| title_full_unstemmed |
Algorithms for solving the job rotation problem with heterogeneous workers |
| title_sort |
Algorithms for solving the job rotation problem with heterogeneous workers |
| author |
Lopes, Caio de Oliveira |
| author_facet |
Lopes, Caio de Oliveira |
| author_role |
author |
| dc.contributor.referee.none.fl_str_mv |
Castellucci, Pedro Belin Dias, Vinicius Vitor dos Santos Parreira Junior, Paulo Afonso |
| dc.contributor.advisor1.fl_str_mv |
Moreira, Mayron César de Oliveira |
| dc.contributor.authorLattes.fl_str_mv |
https://lattes.cnpq.br/4176652334284986 |
| dc.contributor.author.fl_str_mv |
Lopes, Caio de Oliveira |
| contributor_str_mv |
Moreira, Mayron César de Oliveira |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Rotação de tarefas Balanceamento de linha de produção Trabalhadores heterogêneos Heurísticas Programação inteira mista Job rotation Assembly line balancing Heterogeneous workers Heuristics Mixed-integer programming |
| dc.subject.por.fl_str_mv |
Rotação de tarefas Balanceamento de linha de produção Trabalhadores heterogêneos Heurísticas Programação inteira mista Job rotation Assembly line balancing Heterogeneous workers Heuristics Mixed-integer programming |
| description |
This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-09-22T21:58:26Z |
| dc.date.issued.fl_str_mv |
2025-07-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufla.br/handle/1/60315 |
| identifier_str_mv |
LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025. |
| url |
https://repositorio.ufla.br/handle/1/60315 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Instituto de Ciências Exatas e Tecnológicas – ICET |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação |
| dc.publisher.initials.fl_str_mv |
UFLA |
| dc.publisher.country.fl_str_mv |
brasil |
| publisher.none.fl_str_mv |
Universidade Federal de Lavras Instituto de Ciências Exatas e Tecnológicas – ICET |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
| instname_str |
Universidade Federal de Lavras (UFLA) |
| instacron_str |
UFLA |
| institution |
UFLA |
| reponame_str |
Repositório Institucional da UFLA |
| collection |
Repositório Institucional da UFLA |
| bitstream.url.fl_str_mv |
https://repositorio.ufla.br/bitstreams/5ff1f8b7-9c27-426d-905e-26951efc819a/download https://repositorio.ufla.br/bitstreams/cbd13732-12cc-4365-af74-6e0a6195bd7a/download https://repositorio.ufla.br/bitstreams/c3baed0f-2b47-497d-b8c1-d5c20b89c394/download https://repositorio.ufla.br/bitstreams/a660b9ef-442b-42ba-a889-c53bf8ccfa0e/download https://repositorio.ufla.br/bitstreams/b9fb3caf-af37-4f19-87a6-7333eae48b3c/download https://repositorio.ufla.br/bitstreams/c7dcbb74-0a56-4099-bdef-9a9e1a5776bb/download https://repositorio.ufla.br/bitstreams/81d4190a-a375-445d-8772-32e28f7f8271/download https://repositorio.ufla.br/bitstreams/a8076043-1638-4d1c-8fdb-7bdb5d8db7f7/download |
| bitstream.checksum.fl_str_mv |
4ae2e6d30f6420ff271fd534ed72a21d 03bac836e61602eeb30cfcbba7e2795f 5a033ee506f3a0a175bee8fc81f0bd66 dc1a173fe9489e283d3a1f54f6ab2ab9 0be4d43407f28976b3b7b8f169812aa4 c142b8af0c154270edee557b46fff038 80ea37d2bdbfca25c1c696bfc1accf2e 894686616f836ca82f3a0c5825ca6240 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
| repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
| _version_ |
1854947840234618880 |