Algorithms for solving the job rotation problem with heterogeneous workers

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Lopes, Caio de Oliveira lattes
Orientador(a): Moreira, Mayron César de Oliveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Instituto de Ciências Exatas e Tecnológicas – ICET
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufla.br/handle/1/60315
Resumo: This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines.
id UFLA_41d2681d8fcb775baa2a0ec7df56c03c
oai_identifier_str oai:repositorio.ufla.br:1/60315
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Castellucci, Pedro BelinDias, Vinicius Vitor dos SantosParreira Junior, Paulo AfonsoMoreira, Mayron César de Oliveirahttps://lattes.cnpq.br/4176652334284986Lopes, Caio de Oliveira2025-09-22T21:58:26Z2025-07-16LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025.https://repositorio.ufla.br/handle/1/60315This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines.Este estudo aborda o problema de balanceamento de linhas de produção e designação de trabalhadores em linhas de montagem com rotação de tarefas (JRALWABP). O problema em questão considera trabalhadores com heterogeneidade na execução de tarefas. O objetivo consiste em maximizar o número de tarefas distintas executadas pelos trabalhadores e minimizar o tempo de ciclo médio em relação a todos os períodos, sujeito às precedências de tarefas. Inicialmente, avaliamos duas formulações exatas de programação inteira mista (Modelos M1 e M2), considerando o tempo médio de ciclo como restrição. Embora essas formulações fossem úteis como referência, mostraram-se inviáveis para instâncias maiores, aumentando a necessidade de heurísticas robustas. Nesse contexto, desenvolvemos a estratégia denominada HAJR2, que evolui o algoritmo híbrido existente (HAJR1) por meio de um processo iterativo intercalando heurísticas como GRASP, Busca Tabu e um algoritmo genético, além da introdução da heurística Pattern Injection Local Search (PILS). Os parâmetros da Busca Tabu e do algoritmo genético foram calibrados com Irace e a execução de ambos foi feita em mesma base, assegurando comparações justas. Os experimentos em quatro famílias de instâncias mostraram que HAJR2 supera HAJR1, aumentando a variedade média de tarefas atribuídas sem afetar o tempo de ciclo, e se mostra mais resistente em instâncias com alta taxa de incompatibilidade tarefa/trabalhador. Este trabalho refina o estado da arte na programação de rotação de trabalhadores heterogêneos, oferecendo uma base prática e extensível para aplicações reais em linhas de montagem.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqTecnológicoTecnologia e produçãoODS 9: Indústria, inovação e infraestruturaODS 17: Parcerias e meios de implementaçãoUniversidade Federal de LavrasInstituto de Ciências Exatas e Tecnológicas – ICETPrograma de Pós-Graduação em Ciência da ComputaçãoUFLAbrasilAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORotação de tarefasBalanceamento de linha de produçãoTrabalhadores heterogêneosHeurísticasProgramação inteira mistaJob rotationAssembly line balancingHeterogeneous workersHeuristicsMixed-integer programmingAlgorithms for solving the job rotation problem with heterogeneous workersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAORIGINALTexto completo.pdfTexto completo.pdfapplication/pdf5149045https://repositorio.ufla.br/bitstreams/5ff1f8b7-9c27-426d-905e-26951efc819a/download4ae2e6d30f6420ff271fd534ed72a21dMD51trueAnonymousREADImpactos da pesquisa.pdfImpactos da pesquisa.pdfapplication/pdf211629https://repositorio.ufla.br/bitstreams/cbd13732-12cc-4365-af74-6e0a6195bd7a/download03bac836e61602eeb30cfcbba7e2795fMD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.ufla.br/bitstreams/c3baed0f-2b47-497d-b8c1-d5c20b89c394/download5a033ee506f3a0a175bee8fc81f0bd66MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8955https://repositorio.ufla.br/bitstreams/a660b9ef-442b-42ba-a889-c53bf8ccfa0e/downloaddc1a173fe9489e283d3a1f54f6ab2ab9MD54falseAnonymousREADTEXTTexto completo.pdf.txtTexto completo.pdf.txtExtracted texttext/plain101968https://repositorio.ufla.br/bitstreams/b9fb3caf-af37-4f19-87a6-7333eae48b3c/download0be4d43407f28976b3b7b8f169812aa4MD55falseAnonymousREADImpactos da pesquisa.pdf.txtImpactos da pesquisa.pdf.txtExtracted texttext/plain5444https://repositorio.ufla.br/bitstreams/c7dcbb74-0a56-4099-bdef-9a9e1a5776bb/downloadc142b8af0c154270edee557b46fff038MD57falseAnonymousREADTHUMBNAILTexto completo.pdf.jpgTexto completo.pdf.jpgGenerated Thumbnailimage/jpeg3096https://repositorio.ufla.br/bitstreams/81d4190a-a375-445d-8772-32e28f7f8271/download80ea37d2bdbfca25c1c696bfc1accf2eMD56falseAnonymousREADImpactos da pesquisa.pdf.jpgImpactos da pesquisa.pdf.jpgGenerated Thumbnailimage/jpeg5232https://repositorio.ufla.br/bitstreams/a8076043-1638-4d1c-8fdb-7bdb5d8db7f7/download894686616f836ca82f3a0c5825ca6240MD58falseAnonymousREAD1/603152025-10-06 18:42:47.451http://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufla.br:1/60315https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-10-06T21:42:47Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CgphKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIERlY2xhcmEgdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91ICBlbnRpZGFkZS4KCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcyBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCg==
dc.title.none.fl_str_mv Algorithms for solving the job rotation problem with heterogeneous workers
title Algorithms for solving the job rotation problem with heterogeneous workers
spellingShingle Algorithms for solving the job rotation problem with heterogeneous workers
Lopes, Caio de Oliveira
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Rotação de tarefas
Balanceamento de linha de produção
Trabalhadores heterogêneos
Heurísticas
Programação inteira mista
Job rotation
Assembly line balancing
Heterogeneous workers
Heuristics
Mixed-integer programming
title_short Algorithms for solving the job rotation problem with heterogeneous workers
title_full Algorithms for solving the job rotation problem with heterogeneous workers
title_fullStr Algorithms for solving the job rotation problem with heterogeneous workers
title_full_unstemmed Algorithms for solving the job rotation problem with heterogeneous workers
title_sort Algorithms for solving the job rotation problem with heterogeneous workers
author Lopes, Caio de Oliveira
author_facet Lopes, Caio de Oliveira
author_role author
dc.contributor.referee.none.fl_str_mv Castellucci, Pedro Belin
Dias, Vinicius Vitor dos Santos
Parreira Junior, Paulo Afonso
dc.contributor.advisor1.fl_str_mv Moreira, Mayron César de Oliveira
dc.contributor.authorLattes.fl_str_mv https://lattes.cnpq.br/4176652334284986
dc.contributor.author.fl_str_mv Lopes, Caio de Oliveira
contributor_str_mv Moreira, Mayron César de Oliveira
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Rotação de tarefas
Balanceamento de linha de produção
Trabalhadores heterogêneos
Heurísticas
Programação inteira mista
Job rotation
Assembly line balancing
Heterogeneous workers
Heuristics
Mixed-integer programming
dc.subject.por.fl_str_mv Rotação de tarefas
Balanceamento de linha de produção
Trabalhadores heterogêneos
Heurísticas
Programação inteira mista
Job rotation
Assembly line balancing
Heterogeneous workers
Heuristics
Mixed-integer programming
description This study addresses the problem of assembly line balancing and worker assignment in job rotation scenarios (JRALWABP). The problem considers workers with heterogeneous task execution capabilities. The objective is to maximize the number of distinct tasks performed by each worker and to minimize the average cycle time across all periods, subject to task precedence constraints. Initially, we evaluated two exact mixed-integer programming formulations (Models M1 and M2), considering the average cycle time as a constraint. Although these formulations were useful as a reference, they proved infeasible for larger instances, highlighting the need for robust heuristics. In this context, we developed a strategy called HAJR2, which enhances the existing hybrid algorithm (HAJR1) through an iterative process that interleaves heuristics such as GRASP, Tabu Search, and a Genetic Algorithm, along with the introduction of the Pattern Injection Local Search (PILS) heuristic. The parameters of both the Tabu Search and Genetic Algorithm were tuned using Irace, and their execution was based on the same experimental setup, ensuring fair comparisons. Experiments on four instance families demonstrated that HAJR2 outperforms HAJR1 by increasing the average variety of tasks assigned without affecting the cycle time, and it proves more resilient in instances with a high task/worker incompatibility rate. This work refines the state of the art in heterogeneous worker job rotation scheduling and offers a practical, extensible foundation for real-world applications in assembly lines.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-09-22T21:58:26Z
dc.date.issued.fl_str_mv 2025-07-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025.
dc.identifier.uri.fl_str_mv https://repositorio.ufla.br/handle/1/60315
identifier_str_mv LOPES, Caio de Oliveira. Algorithms for solving the job rotation problem with heterogeneous workers. 2025. 92 p. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2025.
url https://repositorio.ufla.br/handle/1/60315
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Instituto de Ciências Exatas e Tecnológicas – ICET
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFLA
dc.publisher.country.fl_str_mv brasil
publisher.none.fl_str_mv Universidade Federal de Lavras
Instituto de Ciências Exatas e Tecnológicas – ICET
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
bitstream.url.fl_str_mv https://repositorio.ufla.br/bitstreams/5ff1f8b7-9c27-426d-905e-26951efc819a/download
https://repositorio.ufla.br/bitstreams/cbd13732-12cc-4365-af74-6e0a6195bd7a/download
https://repositorio.ufla.br/bitstreams/c3baed0f-2b47-497d-b8c1-d5c20b89c394/download
https://repositorio.ufla.br/bitstreams/a660b9ef-442b-42ba-a889-c53bf8ccfa0e/download
https://repositorio.ufla.br/bitstreams/b9fb3caf-af37-4f19-87a6-7333eae48b3c/download
https://repositorio.ufla.br/bitstreams/c7dcbb74-0a56-4099-bdef-9a9e1a5776bb/download
https://repositorio.ufla.br/bitstreams/81d4190a-a375-445d-8772-32e28f7f8271/download
https://repositorio.ufla.br/bitstreams/a8076043-1638-4d1c-8fdb-7bdb5d8db7f7/download
bitstream.checksum.fl_str_mv 4ae2e6d30f6420ff271fd534ed72a21d
03bac836e61602eeb30cfcbba7e2795f
5a033ee506f3a0a175bee8fc81f0bd66
dc1a173fe9489e283d3a1f54f6ab2ab9
0be4d43407f28976b3b7b8f169812aa4
c142b8af0c154270edee557b46fff038
80ea37d2bdbfca25c1c696bfc1accf2e
894686616f836ca82f3a0c5825ca6240
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1854947840234618880