Incremental missing data imputation via modified granular evolving fuzzy model
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Lavras
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
|
| Departamento: |
Departamento de Engenharia
|
| País: |
brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufla.br/handle/1/30140 |
Resumo: | Não se aplica. |
| id |
UFLA_f4e79942f773426e1fccb65bfde989ff |
|---|---|
| oai_identifier_str |
oai:repositorio.ufla.br:1/30140 |
| network_acronym_str |
UFLA |
| network_name_str |
Repositório Institucional da UFLA |
| repository_id_str |
|
| spelling |
2018-08-23T11:45:29Z2018-08-23T11:45:29Z2018-08-222018-07-17GARCIA, C. M. Incremental missing data imputation via modified granular evolving fuzzy model. 2018. 71 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)-Universidade Federal de Lavras, Lavras, 2018.https://repositorio.ufla.br/handle/1/30140Não se aplica.Large amounts of data have been produced daily. Extracting information and knowledge from data is meaningful for many purposes and endeavors, such as prediction of future values of time series, classification, semi-supervised learning and control. Computational intelligence and machine learning methods, such as neural networks and fuzzy systems, usually require complete datasets to work properly. Real-world datasets may contain missing values due to, e.g., malfunctioning of sensors or data transfer problems. In online environments, the properties of the data may change over time so that offline model training based on multiple passes over data is prohibited due to its inherent time and memory constraints. This study proposes a method for incremental missing data imputation using a modified granular evolving fuzzy model, namely evolving Fuzzy Granular Predictor (eFGP). eFGP is equipped with an incremental learning algorithm that simultaneously impute missing data and adapt model parameters and structure. eFGP is able to handle single and multiple missing values on data samples by developing reduced-term consequent polynomials and relying on information of time-varying granules. The method is evaluated in prediction and function approximation problems considering the constraints of online data stream. Particularly, the underlying data streams may be subject to missing at random (MAR) and missing completely at random (MCAR) types of missing values. Predictions given by the model evolved after data imputation are compared to those provided by state-of-the-art fuzzy and neuro-fuzzy evolving modeling methods in the sense of accuracy. Results and statistical comparisons with other approaches corroborate to conclude that eFGP is competitive as a general evolving intelligent method and overcomes its counterparts in MAR and MCAR scenarios according to an ANOVA-Tukey statistical hypothesis test.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaEngenharia de SoftwareEvolving intelligenceFuzzy systemsData streamIncremental learningMissing data imputationInteligência em evoluçãoSistemas FuzzyFluxo de dadosAprendizagem incrementalImputação de dados perdidosIncremental missing data imputation via modified granular evolving fuzzy modelImputação incremental de dados faltantes via modelo granular fuzzy evolutivo modificadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLeite, Daniel FurtadoEsmin, Ahmed Ali AbdallaCamargo, Heloisa de ArrudaCintra, Marcos Evandrohttp://lattes.cnpq.br/0099830309630110Garcia, Cristiano Mesquitainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAORIGINALDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdfDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdfapplication/pdf1468079https://repositorio.ufla.br/bitstreams/65f38ea7-e60c-4e12-bbc4-344834f4f5af/download2e9e0171a505e10cfc1db4d03fd46d9cMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8953https://repositorio.ufla.br/bitstreams/d21b041b-0cfa-4884-ac51-9da3245ca434/download760884c1e72224de569e74f79eb87ce3MD52falseAnonymousREADTEXTDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdf.txtDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdf.txtExtracted texttext/plain100899https://repositorio.ufla.br/bitstreams/b3c57134-ee0c-4b12-89b9-dc64bdb50c66/download36556e9c8160706ec6ee89a06f2232ebMD53falseAnonymousREADTHUMBNAILDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdf.jpgDISSERTAÇÃO_Incremental missing data imputation via modified granular evolving fuzzy model.pdf.jpgGenerated Thumbnailimage/jpeg3115https://repositorio.ufla.br/bitstreams/2f1c2208-9e5b-4024-a793-617c7cdae40e/download91cc3e791be9d8616272f3c77f1dc137MD54falseAnonymousREAD1/301402025-08-19 09:59:29.772open.accessoai:repositorio.ufla.br:1/30140https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-08-19T12:59:29Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CmEpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50bwpsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKZW50aWRhZGUuCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zCmRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MKZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqQpiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUKbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIKb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgo= |
| dc.title.pt_BR.fl_str_mv |
Incremental missing data imputation via modified granular evolving fuzzy model |
| dc.title.alternative.pt_BR.fl_str_mv |
Imputação incremental de dados faltantes via modelo granular fuzzy evolutivo modificado |
| title |
Incremental missing data imputation via modified granular evolving fuzzy model |
| spellingShingle |
Incremental missing data imputation via modified granular evolving fuzzy model Garcia, Cristiano Mesquita Engenharia de Software Evolving intelligence Fuzzy systems Data stream Incremental learning Missing data imputation Inteligência em evolução Sistemas Fuzzy Fluxo de dados Aprendizagem incremental Imputação de dados perdidos |
| title_short |
Incremental missing data imputation via modified granular evolving fuzzy model |
| title_full |
Incremental missing data imputation via modified granular evolving fuzzy model |
| title_fullStr |
Incremental missing data imputation via modified granular evolving fuzzy model |
| title_full_unstemmed |
Incremental missing data imputation via modified granular evolving fuzzy model |
| title_sort |
Incremental missing data imputation via modified granular evolving fuzzy model |
| author |
Garcia, Cristiano Mesquita |
| author_facet |
Garcia, Cristiano Mesquita |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Leite, Daniel Furtado |
| dc.contributor.advisor-co1.fl_str_mv |
Esmin, Ahmed Ali Abdalla |
| dc.contributor.referee1.fl_str_mv |
Camargo, Heloisa de Arruda |
| dc.contributor.referee2.fl_str_mv |
Cintra, Marcos Evandro |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0099830309630110 |
| dc.contributor.author.fl_str_mv |
Garcia, Cristiano Mesquita |
| contributor_str_mv |
Leite, Daniel Furtado Esmin, Ahmed Ali Abdalla Camargo, Heloisa de Arruda Cintra, Marcos Evandro |
| dc.subject.cnpq.fl_str_mv |
Engenharia de Software |
| topic |
Engenharia de Software Evolving intelligence Fuzzy systems Data stream Incremental learning Missing data imputation Inteligência em evolução Sistemas Fuzzy Fluxo de dados Aprendizagem incremental Imputação de dados perdidos |
| dc.subject.por.fl_str_mv |
Evolving intelligence Fuzzy systems Data stream Incremental learning Missing data imputation Inteligência em evolução Sistemas Fuzzy Fluxo de dados Aprendizagem incremental Imputação de dados perdidos |
| description |
Não se aplica. |
| publishDate |
2018 |
| dc.date.submitted.none.fl_str_mv |
2018-07-17 |
| dc.date.accessioned.fl_str_mv |
2018-08-23T11:45:29Z |
| dc.date.available.fl_str_mv |
2018-08-23T11:45:29Z |
| dc.date.issued.fl_str_mv |
2018-08-22 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GARCIA, C. M. Incremental missing data imputation via modified granular evolving fuzzy model. 2018. 71 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)-Universidade Federal de Lavras, Lavras, 2018. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufla.br/handle/1/30140 |
| identifier_str_mv |
GARCIA, C. M. Incremental missing data imputation via modified granular evolving fuzzy model. 2018. 71 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)-Universidade Federal de Lavras, Lavras, 2018. |
| url |
https://repositorio.ufla.br/handle/1/30140 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia de Sistemas e Automação |
| dc.publisher.initials.fl_str_mv |
UFLA |
| dc.publisher.country.fl_str_mv |
brasil |
| dc.publisher.department.fl_str_mv |
Departamento de Engenharia |
| publisher.none.fl_str_mv |
Universidade Federal de Lavras |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
| instname_str |
Universidade Federal de Lavras (UFLA) |
| instacron_str |
UFLA |
| institution |
UFLA |
| reponame_str |
Repositório Institucional da UFLA |
| collection |
Repositório Institucional da UFLA |
| bitstream.url.fl_str_mv |
https://repositorio.ufla.br/bitstreams/65f38ea7-e60c-4e12-bbc4-344834f4f5af/download https://repositorio.ufla.br/bitstreams/d21b041b-0cfa-4884-ac51-9da3245ca434/download https://repositorio.ufla.br/bitstreams/b3c57134-ee0c-4b12-89b9-dc64bdb50c66/download https://repositorio.ufla.br/bitstreams/2f1c2208-9e5b-4024-a793-617c7cdae40e/download |
| bitstream.checksum.fl_str_mv |
2e9e0171a505e10cfc1db4d03fd46d9c 760884c1e72224de569e74f79eb87ce3 36556e9c8160706ec6ee89a06f2232eb 91cc3e791be9d8616272f3c77f1dc137 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
| repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
| _version_ |
1854947678181392384 |