Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: DINIZ, Joel de Conceição Nogueira lattes
Orientador(a): PAIVA, Anselmo Cardoso de lattes
Banca de defesa: PAIVA, Anselmo Cardoso de lattes, CUNHA, Sandra Cristina Alves Pereira da Silva lattes, BRAZ JUNIOR, Geraldo lattes, ALMEIDA, João Dallyson Sousa de lattes, CONCI, Aura
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/6651
Resumo: Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase.
id UFMA_21fcbd4d15e6e610549cb03b34ad549a
oai_identifier_str oai:tede2:tede/6651
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, Sandra Cristina Alves Pereira da SilvaPAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, Sandra Cristina Alves Pereira da SilvaBRAZ JUNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641CONCI, Aurahttp://lattes.cnpq.br/5601388085745497https://lattes.cnpq.br/7447454233583384DINIZ, Joel de Conceição Nogueira23/10/20252025-12-03T12:47:51Z2025DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025.https://tedebc.ufma.br/jspui/handle/tede/6651Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase.Patologias em estruturas de concreto podem ser evidenciadas visualmente em sua superfície, tais como fissuras ou trincas, fragmentação de parte do concreto, eflorescência, manchas de corrosão, e barras de aço expostas, sendo estes dois últimos ocorrência em concreto armado. Portanto, estas patologias podem ser analisadas a partir de imagens de estruturas de concreto armado. Esta tese propõe um ensemble de redes convolucionais para inspeção visual de estruturas de concreto armado. Este método permite agilizar a tarefa de detecção e aumentar sua eficácia, por meio do ganho de tempo nas identificações a serem analisadas, e eliminação, ou redução, de erros, como os advindos de falhas humanas mediante execução massiva de tarefas tediosas nas análises. A tarefa de identificação de patologia pode ocorrer mediante uso de uma rede neural convolucional, caso as imagens estejam recortadas para a patologia específica a ser identificada, ou, com uso de rede de detecção, caso seja uma imagem ampla onde a patologia está inserida em um contexto com diversas classes de patologia, e mesmo área sem patologia. Outra tarefa que possibilita a identificação e a análise destas patologias é a segmentação. O método foi testado nas tarefas de detecção e classificação. As arquiteturas de rede neural utilizadas para detecção foram a YOLO v11 e a TOOD (Task-aligned One-stage Object Detection), na abordagem de redes neurais de um estágio, e a Faster R-CNN, na abordagem de redes neurais de dois estágios. As três redes foram posteriormente combinadas para a aplicação do Ensemble, sendo utilizada Weighted Box Fusion. Já no caso da tarefa de classificação, as arquiteturas de redes utilizadas foram DenseNet121, ResNet50 e MobileNeV3. Realizou-se uma pesquisa para identificar e selecionar conjuntos de dados adequados ao método proposto. O dataset selecionado para classificação é o Ozgnel e o de detecção é o CODEBRIM. A tarefa de detecção consiste em localizar um artefato e classificá-lo. Embora esta abordagem seja eficiente, a pesquisa testou a detecção para a localização de patologias, sem definir inicialmente a qual classe pertencem, e, posteriormente, usar uma rede neural específica de classificação para definir os tipos de patologias e, sobretudo, permitir a eliminação de falsos positivos. A abordagem de combinar rede de detecção e rede dedicada de classificação proporcionou o resultado pretendido, potencializado por Ensemble, que aumentou a sensibilidade na fase de detecção e elevou o número de artefatos localizados. Essa abordagem permite identificar falsos positivos na primeira fase, mas esses são eliminados na última fase.Submitted by Maria Aparecida (cidazen@gmail.com) on 2025-12-03T12:47:51Z No. of bitstreams: 1 Joel de Conceição Nogueira Diniz.pdf: 29167668 bytes, checksum: bf9e918a9eb68b5bd9491b5853d3e258 (MD5)Made available in DSpace on 2025-12-03T12:47:51Z (GMT). No. of bitstreams: 1 Joel de Conceição Nogueira Diniz.pdf: 29167668 bytes, checksum: bf9e918a9eb68b5bd9491b5853d3e258 (MD5) Previous issue date: 2025-10-31application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃOUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETPatologias no Concreto;Aprendizado Profundo;Visão Computacional;Detecção;ClassificaçãoDeep Learning;Computer Vision;Detection;Classification;Concrete PathologiesEstruturas de ConcretoEnsemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto ArmadoConvolutional Network Ensemble for Inspection Visual Inspection of Reinforced Concrete Structuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALJoel de Conceição Nogueira Diniz.pdfJoel de Conceição Nogueira Diniz.pdfapplication/pdf29167668http://tedebc.ufma.br:8080/bitstream/tede/6651/2/Joel+de+Concei%C3%A7%C3%A3o+Nogueira+Diniz.pdfbf9e918a9eb68b5bd9491b5853d3e258MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/6651/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/66512025-12-11 14:24:09.424oai:tede2:tede/6651IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.bropendoar:21312025-12-11T17:24:09Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
dc.title.alternative.eng.fl_str_mv Convolutional Network Ensemble for Inspection Visual Inspection of Reinforced Concrete Structures
title Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
spellingShingle Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
DINIZ, Joel de Conceição Nogueira
Patologias no Concreto;
Aprendizado Profundo;
Visão Computacional;
Detecção;
Classificação
Deep Learning;
Computer Vision;
Detection;
Classification;
Concrete Pathologies
Estruturas de Concreto
title_short Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
title_full Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
title_fullStr Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
title_full_unstemmed Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
title_sort Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
author DINIZ, Joel de Conceição Nogueira
author_facet DINIZ, Joel de Conceição Nogueira
author_role author
dc.contributor.advisor1.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.advisor-co1.fl_str_mv CUNHA, Sandra Cristina Alves Pereira da Silva
dc.contributor.referee1.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.referee2.fl_str_mv CUNHA, Sandra Cristina Alves Pereira da Silva
dc.contributor.referee3.fl_str_mv BRAZ JUNIOR, Geraldo
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.referee4.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee5.fl_str_mv CONCI, Aura
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/5601388085745497
dc.contributor.authorLattes.fl_str_mv https://lattes.cnpq.br/7447454233583384
dc.contributor.author.fl_str_mv DINIZ, Joel de Conceição Nogueira
contributor_str_mv PAIVA, Anselmo Cardoso de
CUNHA, Sandra Cristina Alves Pereira da Silva
PAIVA, Anselmo Cardoso de
CUNHA, Sandra Cristina Alves Pereira da Silva
BRAZ JUNIOR, Geraldo
ALMEIDA, João Dallyson Sousa de
CONCI, Aura
dc.subject.por.fl_str_mv Patologias no Concreto;
Aprendizado Profundo;
Visão Computacional;
Detecção;
Classificação
topic Patologias no Concreto;
Aprendizado Profundo;
Visão Computacional;
Detecção;
Classificação
Deep Learning;
Computer Vision;
Detection;
Classification;
Concrete Pathologies
Estruturas de Concreto
dc.subject.eng.fl_str_mv Deep Learning;
Computer Vision;
Detection;
Classification;
Concrete Pathologies
dc.subject.cnpq.fl_str_mv Estruturas de Concreto
description Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-12-03T12:47:51Z
dc.date.issued.fl_str_mv 2025
dc.date.por.fl_str_mv 23/10/2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/6651
identifier_str_mv DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025.
url https://tedebc.ufma.br/jspui/handle/tede/6651
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/6651/2/Joel+de+Concei%C3%A7%C3%A3o+Nogueira+Diniz.pdf
http://tedebc.ufma.br:8080/bitstream/tede/6651/1/license.txt
bitstream.checksum.fl_str_mv bf9e918a9eb68b5bd9491b5853d3e258
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br
_version_ 1853507966455513088