Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO
|
| Departamento: |
DEPARTAMENTO DE INFORMÁTICA/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://tedebc.ufma.br/jspui/handle/tede/6651 |
Resumo: | Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase. |
| id |
UFMA_21fcbd4d15e6e610549cb03b34ad549a |
|---|---|
| oai_identifier_str |
oai:tede2:tede/6651 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, Sandra Cristina Alves Pereira da SilvaPAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, Sandra Cristina Alves Pereira da SilvaBRAZ JUNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641CONCI, Aurahttp://lattes.cnpq.br/5601388085745497https://lattes.cnpq.br/7447454233583384DINIZ, Joel de Conceição Nogueira23/10/20252025-12-03T12:47:51Z2025DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025.https://tedebc.ufma.br/jspui/handle/tede/6651Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase.Patologias em estruturas de concreto podem ser evidenciadas visualmente em sua superfície, tais como fissuras ou trincas, fragmentação de parte do concreto, eflorescência, manchas de corrosão, e barras de aço expostas, sendo estes dois últimos ocorrência em concreto armado. Portanto, estas patologias podem ser analisadas a partir de imagens de estruturas de concreto armado. Esta tese propõe um ensemble de redes convolucionais para inspeção visual de estruturas de concreto armado. Este método permite agilizar a tarefa de detecção e aumentar sua eficácia, por meio do ganho de tempo nas identificações a serem analisadas, e eliminação, ou redução, de erros, como os advindos de falhas humanas mediante execução massiva de tarefas tediosas nas análises. A tarefa de identificação de patologia pode ocorrer mediante uso de uma rede neural convolucional, caso as imagens estejam recortadas para a patologia específica a ser identificada, ou, com uso de rede de detecção, caso seja uma imagem ampla onde a patologia está inserida em um contexto com diversas classes de patologia, e mesmo área sem patologia. Outra tarefa que possibilita a identificação e a análise destas patologias é a segmentação. O método foi testado nas tarefas de detecção e classificação. As arquiteturas de rede neural utilizadas para detecção foram a YOLO v11 e a TOOD (Task-aligned One-stage Object Detection), na abordagem de redes neurais de um estágio, e a Faster R-CNN, na abordagem de redes neurais de dois estágios. As três redes foram posteriormente combinadas para a aplicação do Ensemble, sendo utilizada Weighted Box Fusion. Já no caso da tarefa de classificação, as arquiteturas de redes utilizadas foram DenseNet121, ResNet50 e MobileNeV3. Realizou-se uma pesquisa para identificar e selecionar conjuntos de dados adequados ao método proposto. O dataset selecionado para classificação é o Ozgnel e o de detecção é o CODEBRIM. A tarefa de detecção consiste em localizar um artefato e classificá-lo. Embora esta abordagem seja eficiente, a pesquisa testou a detecção para a localização de patologias, sem definir inicialmente a qual classe pertencem, e, posteriormente, usar uma rede neural específica de classificação para definir os tipos de patologias e, sobretudo, permitir a eliminação de falsos positivos. A abordagem de combinar rede de detecção e rede dedicada de classificação proporcionou o resultado pretendido, potencializado por Ensemble, que aumentou a sensibilidade na fase de detecção e elevou o número de artefatos localizados. Essa abordagem permite identificar falsos positivos na primeira fase, mas esses são eliminados na última fase.Submitted by Maria Aparecida (cidazen@gmail.com) on 2025-12-03T12:47:51Z No. of bitstreams: 1 Joel de Conceição Nogueira Diniz.pdf: 29167668 bytes, checksum: bf9e918a9eb68b5bd9491b5853d3e258 (MD5)Made available in DSpace on 2025-12-03T12:47:51Z (GMT). No. of bitstreams: 1 Joel de Conceição Nogueira Diniz.pdf: 29167668 bytes, checksum: bf9e918a9eb68b5bd9491b5853d3e258 (MD5) Previous issue date: 2025-10-31application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃOUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETPatologias no Concreto;Aprendizado Profundo;Visão Computacional;Detecção;ClassificaçãoDeep Learning;Computer Vision;Detection;Classification;Concrete PathologiesEstruturas de ConcretoEnsemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto ArmadoConvolutional Network Ensemble for Inspection Visual Inspection of Reinforced Concrete Structuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALJoel de Conceição Nogueira Diniz.pdfJoel de Conceição Nogueira Diniz.pdfapplication/pdf29167668http://tedebc.ufma.br:8080/bitstream/tede/6651/2/Joel+de+Concei%C3%A7%C3%A3o+Nogueira+Diniz.pdfbf9e918a9eb68b5bd9491b5853d3e258MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/6651/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/66512025-12-11 14:24:09.424oai:tede2:tede/6651IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.bropendoar:21312025-12-11T17:24:09Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| dc.title.alternative.eng.fl_str_mv |
Convolutional Network Ensemble for Inspection Visual Inspection of Reinforced Concrete Structures |
| title |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| spellingShingle |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado DINIZ, Joel de Conceição Nogueira Patologias no Concreto; Aprendizado Profundo; Visão Computacional; Detecção; Classificação Deep Learning; Computer Vision; Detection; Classification; Concrete Pathologies Estruturas de Concreto |
| title_short |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| title_full |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| title_fullStr |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| title_full_unstemmed |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| title_sort |
Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado |
| author |
DINIZ, Joel de Conceição Nogueira |
| author_facet |
DINIZ, Joel de Conceição Nogueira |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
PAIVA, Anselmo Cardoso de |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
| dc.contributor.advisor-co1.fl_str_mv |
CUNHA, Sandra Cristina Alves Pereira da Silva |
| dc.contributor.referee1.fl_str_mv |
PAIVA, Anselmo Cardoso de |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
| dc.contributor.referee2.fl_str_mv |
CUNHA, Sandra Cristina Alves Pereira da Silva |
| dc.contributor.referee3.fl_str_mv |
BRAZ JUNIOR, Geraldo |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8287861610873629 |
| dc.contributor.referee4.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
| dc.contributor.referee5.fl_str_mv |
CONCI, Aura |
| dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/5601388085745497 |
| dc.contributor.authorLattes.fl_str_mv |
https://lattes.cnpq.br/7447454233583384 |
| dc.contributor.author.fl_str_mv |
DINIZ, Joel de Conceição Nogueira |
| contributor_str_mv |
PAIVA, Anselmo Cardoso de CUNHA, Sandra Cristina Alves Pereira da Silva PAIVA, Anselmo Cardoso de CUNHA, Sandra Cristina Alves Pereira da Silva BRAZ JUNIOR, Geraldo ALMEIDA, João Dallyson Sousa de CONCI, Aura |
| dc.subject.por.fl_str_mv |
Patologias no Concreto; Aprendizado Profundo; Visão Computacional; Detecção; Classificação |
| topic |
Patologias no Concreto; Aprendizado Profundo; Visão Computacional; Detecção; Classificação Deep Learning; Computer Vision; Detection; Classification; Concrete Pathologies Estruturas de Concreto |
| dc.subject.eng.fl_str_mv |
Deep Learning; Computer Vision; Detection; Classification; Concrete Pathologies |
| dc.subject.cnpq.fl_str_mv |
Estruturas de Concreto |
| description |
Pathologies in concrete structures can be visually detected on their surface, such as cracks or fissures, fragmentation of concrete, efflorescence, corrosion stains, and exposed steel bars (the latter two occurring in reinforced concrete). Therefore, these pathologies can be analyzed via images of reinforced concrete structures. This thesis proposes an ensemble of convolutional networks for visual inspection of reinforced concrete structures. This method speeds up the detection task and increases its effectiveness by saving time on the identification to be analyzed and by eliminating or reducing errors, such as those arising from human error during the massive execution of tedious tasks in the analysis. The task of identifying pathology can be performed using a convolutional neural network if the images are cropped to the specific pathology to be identified, or using a detection network if the images are broad and the pathology is inserted into a context with several classes of pathology, including areas without pathology. Another task that enables the identification and analysis of these pathologies is segmentation. The method was tested with detection and classification tasks. The neural network architectures used for detection were YOLO v11 and TOOD (Taskaligned One-stage Object Detection) for the single-stage approach, and Faster RCNN for the two-stage approach. The three networks were then combined for the Ensemble application, using Weighted Box Fusion. For the classification task, the network architectures used were DenseNet121, ResNet50, and MobileNetV3. Research was conducted to locate and select appropriate datasets for the proposed method. The dataset selected for classification is Ozgnel, and the one for detection is CODEBRIM. The detection task allows an artifact to be located and classified. Although this approach is efficient, the research tested using detection to locate pathologies without initially defining which class they belong to, and then using a specific classification neural network to define the types of pathologies and, above all, to eliminate false positives. The approach of combining a detection network and a dedicated classification network achieved the desired result, with Ensemble used to increase sensitivity in the detection phase, thereby increasing the number of artifacts located. This approach allows false positives to pass in the first phase, but they are eliminated in the last phase. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-12-03T12:47:51Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.date.por.fl_str_mv |
23/10/2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025. |
| dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/6651 |
| identifier_str_mv |
DINIZ, Joel de Conceição Nogueira. Ensemble de Redes Convolucionais para Inspeção Visual de Estruturas de Concreto Armado. 2025. 106 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2025. |
| url |
https://tedebc.ufma.br/jspui/handle/tede/6651 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/6651/2/Joel+de+Concei%C3%A7%C3%A3o+Nogueira+Diniz.pdf http://tedebc.ufma.br:8080/bitstream/tede/6651/1/license.txt |
| bitstream.checksum.fl_str_mv |
bf9e918a9eb68b5bd9491b5853d3e258 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br |
| _version_ |
1853507966455513088 |