Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: OLIVEIRA JUNIOR, José Antonio de lattes
Orientador(a): SILVA, Iranaldo Santos da lattes
Banca de defesa: SILVA, Iranaldo Santos da lattes, LUZ, Rita de Cassia Silva, PAIXÃO, Thiago Regis Longo César da
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCET
Departamento: DEPARTAMENTO DE QUÍMICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/tede/3718
Resumo: Some compound are formed during wastewater disinfection process, especially 2,6-dichloro 1,4-benzoquinone (2,6-DCBQ), which belongs to halobenzoquinones. Reports associate this compound with cases of cancer and various other harmful effects on the endocrine system. In this work, the potential of using a nanoporous gold film as an electrochemical sensor for voltammetric detection of 2,6-DCBQ was investigated. Forming the nanoporous structure consists of a method proposed in the literature in three electrochemical steps, taking a simple, fast and efficient modification route. The formation time of the nanoporous film to obtain the modified electrode was investigated, being established as the optimal time 15 min. An insight into the effects of the anodizing/reduction process on the performance of a nanoporous gold electrocatalyst in an acidic medium was provided. The electrode was analyzed in a 3-stage modification by SEM and AFM. Subsequently, the performance of the electrochemical sensor in detecting 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) was evaluated. An electrocatalytic effect could be noted due to an increase in anodic faradaic peak current of 232,56% and an 80 mV decrease in anodic peak potential compared to the unmodified electrode. Studies after the dependence of the peak current of the analyte with pH variation, better sensitivity at pH = 5.00. The kinetics of the redox reaction is diffusion controlled, with two electrons being transferred in it. In addition, it was found that the oxidation of 2,6-DCBQ has the same number of protons and electrons generated in the reaction (2 e- / 2 H+ ). The supporting electrolyte showed the most efficiency among tested in the citrate buffer 0.1 mol L-1 results. In view of the system's reversibility, square wave voltammetry showed best analytical signal, the optimized technique parameters were: Eamplitude = 80 mV; Estep = 10mV and Frequency = 25Hz. After the optimization of the entire process, a remarkable performance in the detection of 2,6-DCBQ was obtained. The detection limit, quantification limit and sensitivity were 0,77 µmol L−1 , 2,56 µmol L −1 and 0,64 µA µmol L−1 , respectively. With this, the technique was applied to determine of 2,6-DCBQ in treated water samples (deionized and tap) collected in the electrochemical laboratory (LELQ) at the Federal University of Maranhão campus. The recovery test performed in deionized water and tap water showed recovery values range from 98.80% to 108.70%. These data showed that the optimized system is robust, sensitive, capable of substrate detection with no/low matrix interferences, and suitable for detection applications in treated water samples.
id UFMA_34221f16cfe8bfa73ecc23e2b56de86a
oai_identifier_str oai:tede2:tede/3718
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling SILVA, Iranaldo Santos dahttp://lattes.cnpq.br/1281555528581499SILVA, Iranaldo Santos dahttp://lattes.cnpq.br/1281555528581499LUZ, Rita de Cassia SilvaPAIXÃO, Thiago Regis Longo César daCV: http://lattes.cnpq.br/9046431997118723OLIVEIRA JUNIOR, José Antonio de2022-06-20T19:43:41Z2021-07-22OLIVEIRA JUNIOR, José Antonio de. Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água. 2021. 74 f. Dissertação (Programa de Pós-Graduação em Química/CCET) - Universidade Federal do Maranhão, São Luís, 2021https://tedebc.ufma.br/jspui/handle/tede/tede/3718Some compound are formed during wastewater disinfection process, especially 2,6-dichloro 1,4-benzoquinone (2,6-DCBQ), which belongs to halobenzoquinones. Reports associate this compound with cases of cancer and various other harmful effects on the endocrine system. In this work, the potential of using a nanoporous gold film as an electrochemical sensor for voltammetric detection of 2,6-DCBQ was investigated. Forming the nanoporous structure consists of a method proposed in the literature in three electrochemical steps, taking a simple, fast and efficient modification route. The formation time of the nanoporous film to obtain the modified electrode was investigated, being established as the optimal time 15 min. An insight into the effects of the anodizing/reduction process on the performance of a nanoporous gold electrocatalyst in an acidic medium was provided. The electrode was analyzed in a 3-stage modification by SEM and AFM. Subsequently, the performance of the electrochemical sensor in detecting 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) was evaluated. An electrocatalytic effect could be noted due to an increase in anodic faradaic peak current of 232,56% and an 80 mV decrease in anodic peak potential compared to the unmodified electrode. Studies after the dependence of the peak current of the analyte with pH variation, better sensitivity at pH = 5.00. The kinetics of the redox reaction is diffusion controlled, with two electrons being transferred in it. In addition, it was found that the oxidation of 2,6-DCBQ has the same number of protons and electrons generated in the reaction (2 e- / 2 H+ ). The supporting electrolyte showed the most efficiency among tested in the citrate buffer 0.1 mol L-1 results. In view of the system's reversibility, square wave voltammetry showed best analytical signal, the optimized technique parameters were: Eamplitude = 80 mV; Estep = 10mV and Frequency = 25Hz. After the optimization of the entire process, a remarkable performance in the detection of 2,6-DCBQ was obtained. The detection limit, quantification limit and sensitivity were 0,77 µmol L−1 , 2,56 µmol L −1 and 0,64 µA µmol L−1 , respectively. With this, the technique was applied to determine of 2,6-DCBQ in treated water samples (deionized and tap) collected in the electrochemical laboratory (LELQ) at the Federal University of Maranhão campus. The recovery test performed in deionized water and tap water showed recovery values range from 98.80% to 108.70%. These data showed that the optimized system is robust, sensitive, capable of substrate detection with no/low matrix interferences, and suitable for detection applications in treated water samples.Durante o processo de desinfecção de águas residuais alguns compostos são formados, em especial a 2,6-dicloro-1,4-benzoquinona (2,6-DCBQ), pertencente à classe das halobenzoquinonas. Este composto possui relatos associados a casos de câncer e efeitos nocivos ao sistema endócrino em diferentes estudos realizados. Neste trabalho investigou-se a potencialidade de utilização de um filme de ouro nanoporoso como sensor eletroquímico para quantificação voltamétrica da 2,6-DCBQ. O processo de formação da estrutura nanoporosa consiste num método em três etapas eletroquímicas, levando uma rota de modificação simples, rápida e eficiente. O tempo de formação do filme nanoporoso, da segunda etapa de modificação, para obtenção do eletrodo modificado foi investigado, sendo estabelecido como tempo ótimo 15 min. Analisou-se o eletrodo em uma modificação de 3 estágios, por SEM e AFM. Posteriormente, foi avaliado o desempenho do sensor eletroquímico na detecção de 2,6-dicloro 1,4-benzoquinona (2,6-DCBQ). Um efeito eletrocatalítico pode ser notado devido a um aumento na corrente de pico faradáico anódico de 232,56% e uma diminuição de 80 mV no potencial de pico anódico em comparação com o eletrodo não modificado. Estudos posteriores mostraram a dependência da corrente de pico do analíto com a variação do pH, apresentando melhor sensibilidade em pH = 5,00. A cinética da reação redox é controlada por difusão, sendo transferidos dois elétrons nesta. Além disso, foi constatado que a oxidação da 2,6-DCBQ apresenta o mesmo número de prótons e elétrons envolvidos na reação (2 e- / 2 H+ ). O eletrólito de suporte avaliado como o mais eficiente dentre os testados foi o tampão citrato a uma concentração igual a 0,10 mol L-1 . A técnica de voltametria de onda quadrada mostrou melhor sinal analítico, dentre as técnicas usadas, os parâmetros de técnica otimizados foram: Eamplitude = 80 mV; Estep = 10 mV e Frequência = 25 Hz. Após uma otimização de todo os parâmetros experimentais, obteve-se desempenho notável na detecção de 2,6-DCBQ. O limite de detecção, limite de quantificação e sensibilidade foram 0,77 µmol L−1 , 2,56 µmol L−1 e 0,64 µA µmol L −1 , respectivamente. Com isto, a técnica foi aplicada na determinação de 2,6-DCBQ em amostras de água tratada (desionizada e torneira), coletadas no laboratório de eletroquímica (LELQ) no campus da Universidade Federal do Maranhão. O teste de recuperação realizado em água desionizada e água da torneira apresentou resultados de recuperação de 98,80% a 108,70%. Esses dados mostraram que o método otimizado é robusto, sensível, capaz de detecção de substrato com nenhuma / baixa interferências de matriz e adequado para aplicações de detecção em amostras de água tratada.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2022-06-20T19:43:41Z No. of bitstreams: 1 JoséAntoniodeOliveiraJunior.pdf: 1341488 bytes, checksum: 9c398ef3b990cd7bb03dd8d0025bc755 (MD5)Made available in DSpace on 2022-06-20T19:43:41Z (GMT). No. of bitstreams: 1 JoséAntoniodeOliveiraJunior.pdf: 1341488 bytes, checksum: 9c398ef3b990cd7bb03dd8d0025bc755 (MD5) Previous issue date: 2021-07-22CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCETUFMABrasilDEPARTAMENTO DE QUÍMICA/CCEThalobenzoquinonas;2,6-DCBQ;ouro nanoporoso;sensor eletroquímico;Halobenzoquinones;2,6-DCBQ;nanoporous gold;electrochemical sensor.QuímicaEletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.Nanoporous gold electrode as a chemical sensor for detection of the emerging contaminant 2,6-dichloro-1,4-benzoquinone in a water sample.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALJoséAntoniodeOliveiraJunior.pdfJoséAntoniodeOliveiraJunior.pdfapplication/pdf1341488http://tedebc.ufma.br:8080/bitstream/tede/3718/2/Jos%C3%A9AntoniodeOliveiraJunior.pdf9c398ef3b990cd7bb03dd8d0025bc755MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3718/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/37182022-06-20 16:43:41.232oai:tede2:tede/3718IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-06-20T19:43:41Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
dc.title.alternative.eng.fl_str_mv Nanoporous gold electrode as a chemical sensor for detection of the emerging contaminant 2,6-dichloro-1,4-benzoquinone in a water sample.
title Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
spellingShingle Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
OLIVEIRA JUNIOR, José Antonio de
halobenzoquinonas;
2,6-DCBQ;
ouro nanoporoso;
sensor eletroquímico;
Halobenzoquinones;
2,6-DCBQ;
nanoporous gold;
electrochemical sensor.
Química
title_short Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
title_full Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
title_fullStr Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
title_full_unstemmed Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
title_sort Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água.
author OLIVEIRA JUNIOR, José Antonio de
author_facet OLIVEIRA JUNIOR, José Antonio de
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Iranaldo Santos da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1281555528581499
dc.contributor.referee1.fl_str_mv SILVA, Iranaldo Santos da
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1281555528581499
dc.contributor.referee2.fl_str_mv LUZ, Rita de Cassia Silva
dc.contributor.referee3.fl_str_mv PAIXÃO, Thiago Regis Longo César da
dc.contributor.authorLattes.fl_str_mv CV: http://lattes.cnpq.br/9046431997118723
dc.contributor.author.fl_str_mv OLIVEIRA JUNIOR, José Antonio de
contributor_str_mv SILVA, Iranaldo Santos da
SILVA, Iranaldo Santos da
LUZ, Rita de Cassia Silva
PAIXÃO, Thiago Regis Longo César da
dc.subject.por.fl_str_mv halobenzoquinonas;
2,6-DCBQ;
ouro nanoporoso;
sensor eletroquímico;
topic halobenzoquinonas;
2,6-DCBQ;
ouro nanoporoso;
sensor eletroquímico;
Halobenzoquinones;
2,6-DCBQ;
nanoporous gold;
electrochemical sensor.
Química
dc.subject.eng.fl_str_mv Halobenzoquinones;
2,6-DCBQ;
nanoporous gold;
electrochemical sensor.
dc.subject.cnpq.fl_str_mv Química
description Some compound are formed during wastewater disinfection process, especially 2,6-dichloro 1,4-benzoquinone (2,6-DCBQ), which belongs to halobenzoquinones. Reports associate this compound with cases of cancer and various other harmful effects on the endocrine system. In this work, the potential of using a nanoporous gold film as an electrochemical sensor for voltammetric detection of 2,6-DCBQ was investigated. Forming the nanoporous structure consists of a method proposed in the literature in three electrochemical steps, taking a simple, fast and efficient modification route. The formation time of the nanoporous film to obtain the modified electrode was investigated, being established as the optimal time 15 min. An insight into the effects of the anodizing/reduction process on the performance of a nanoporous gold electrocatalyst in an acidic medium was provided. The electrode was analyzed in a 3-stage modification by SEM and AFM. Subsequently, the performance of the electrochemical sensor in detecting 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) was evaluated. An electrocatalytic effect could be noted due to an increase in anodic faradaic peak current of 232,56% and an 80 mV decrease in anodic peak potential compared to the unmodified electrode. Studies after the dependence of the peak current of the analyte with pH variation, better sensitivity at pH = 5.00. The kinetics of the redox reaction is diffusion controlled, with two electrons being transferred in it. In addition, it was found that the oxidation of 2,6-DCBQ has the same number of protons and electrons generated in the reaction (2 e- / 2 H+ ). The supporting electrolyte showed the most efficiency among tested in the citrate buffer 0.1 mol L-1 results. In view of the system's reversibility, square wave voltammetry showed best analytical signal, the optimized technique parameters were: Eamplitude = 80 mV; Estep = 10mV and Frequency = 25Hz. After the optimization of the entire process, a remarkable performance in the detection of 2,6-DCBQ was obtained. The detection limit, quantification limit and sensitivity were 0,77 µmol L−1 , 2,56 µmol L −1 and 0,64 µA µmol L−1 , respectively. With this, the technique was applied to determine of 2,6-DCBQ in treated water samples (deionized and tap) collected in the electrochemical laboratory (LELQ) at the Federal University of Maranhão campus. The recovery test performed in deionized water and tap water showed recovery values range from 98.80% to 108.70%. These data showed that the optimized system is robust, sensitive, capable of substrate detection with no/low matrix interferences, and suitable for detection applications in treated water samples.
publishDate 2021
dc.date.issued.fl_str_mv 2021-07-22
dc.date.accessioned.fl_str_mv 2022-06-20T19:43:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA JUNIOR, José Antonio de. Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água. 2021. 74 f. Dissertação (Programa de Pós-Graduação em Química/CCET) - Universidade Federal do Maranhão, São Luís, 2021
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3718
identifier_str_mv OLIVEIRA JUNIOR, José Antonio de. Eletrodo de ouro nanoporoso como um sensor eletroquímico para detecção do contaminante emergente 2,6-dicloro-1,4-benzoquinona em amostras de água. 2021. 74 f. Dissertação (Programa de Pós-Graduação em Química/CCET) - Universidade Federal do Maranhão, São Luís, 2021
url https://tedebc.ufma.br/jspui/handle/tede/tede/3718
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE QUÍMICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3718/2/Jos%C3%A9AntoniodeOliveiraJunior.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3718/1/license.txt
bitstream.checksum.fl_str_mv 9c398ef3b990cd7bb03dd8d0025bc755
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1797055623846690816