Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting.
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
| Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tedebc.ufma.br:8080/jspui/handle/tede/1894 |
Resumo: | Independent component analysis (ICA) is a method which objective is to find a non gaussian, linear or non linear representation such that the components are statistically independent. As a representation, tries to capture the input data essential structure. One of ICA applications is feature extraction. A main digital signal processing issue is finding a satisfactory representation, whether for image, speech signal or any signal type for purposes such as compression and de-noise. ICA can be aplied in this direction to propose generative models of the phenomena to be represented. This work presents the problem of spike classification in extracellular records, denominated spike sorting. It is assumed that the waveforms of spikes depend on factors such as the morphology of the neuron and the distance from the electrode, so that different neurons will present different forms of spikes. However, since different neurons may have similar spikes, what makes classification very difficult, the problem is even worse due to background noise and variation os spikes of the same neuron. The spike sorting algorithm is usually divided into three parts: firstly, the spikes are detected, then projected into a feature space (with possible dimensionality reduction) to facilitate differentiation between the waveforms from different neurons, finally the cluster algorithm is run for identifying these characteristics so the spikes from the same neuron. Here, we propose the use of ICA in feature extraction stage, being this step critical to the spike sorting process, thus distinguishing the activity of each neuron detected, supporting the analysis of neural population activity near the electrode. The method was compared with conventional techniques such as Principal Component Analysis and Wavelets, demonstrating a significant improvement in results. |
| id |
UFMA_b8590b6b3400a6cbe7018d577ee08dce |
|---|---|
| oai_identifier_str |
oai:tede2:tede/1894 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
BARROS FILHO, Allan Kardec Duailibe34022589353http://lattes.cnpq.br/0492330410079141http://lattes.cnpq.br/0660692009750374SANTANA, Ewaldo Eder Carvalhohttp://lattes.cnpq.br/0660692009750374BARROS FILHO, Allan Kardec DuailibeSANTANA, Ewaldo Eder CarvalhoARAÚJO, Dráulio Barros dehttp://lattes.cnpq.br/7818012155694188FONSECA NETO, João Viana dahttp://lattes.cnpq.br/0029055473709795672.172.493-68http://lattes.cnpq.br/8923592573399769LOPES, Marcus Vinicius de Sousa2017-09-04T15:04:55Z2013-02-27LOPES, Marcus Vinicius de Sousa. Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting.. 2013. [80 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luís] .http://tedebc.ufma.br:8080/jspui/handle/tede/1894Independent component analysis (ICA) is a method which objective is to find a non gaussian, linear or non linear representation such that the components are statistically independent. As a representation, tries to capture the input data essential structure. One of ICA applications is feature extraction. A main digital signal processing issue is finding a satisfactory representation, whether for image, speech signal or any signal type for purposes such as compression and de-noise. ICA can be aplied in this direction to propose generative models of the phenomena to be represented. This work presents the problem of spike classification in extracellular records, denominated spike sorting. It is assumed that the waveforms of spikes depend on factors such as the morphology of the neuron and the distance from the electrode, so that different neurons will present different forms of spikes. However, since different neurons may have similar spikes, what makes classification very difficult, the problem is even worse due to background noise and variation os spikes of the same neuron. The spike sorting algorithm is usually divided into three parts: firstly, the spikes are detected, then projected into a feature space (with possible dimensionality reduction) to facilitate differentiation between the waveforms from different neurons, finally the cluster algorithm is run for identifying these characteristics so the spikes from the same neuron. Here, we propose the use of ICA in feature extraction stage, being this step critical to the spike sorting process, thus distinguishing the activity of each neuron detected, supporting the analysis of neural population activity near the electrode. The method was compared with conventional techniques such as Principal Component Analysis and Wavelets, demonstrating a significant improvement in results.A análise de componentes independentes (ICA, do inglês Indepdendent Component Analysis) é um método no qual o objetivo é encontrar uma representação linear ou não linear, não-gaussiana, tal que as componentes sejam estatisticamente independentes. Como uma representação busca capturar a estrutura essencial dos dados de entrada. Uma das aplicações de ICA é em extração de características. Um grande problema no processamento digital de sinais é encontrar uma representação adequada, seja para imagem, sinal de fala ou qualquer outro tipo de sinal para objetivos como compressão e remoção de ruído. ICA pode ser aplicada nesta direção ao tentar propor modelos geradores para os fenômenos a serem representados. Neste trabalho é apresentado o problema da classificação de espículas em gravações extracelulares, denominado spike sorting. Assume-se que as formas de onda das espículas dependem de fatores como a morfologia do neurônio e da distância deste para o eletrodo, então diferentes neurônios irão apresentar diferentes formas de espículas. Contudo diferentes neurônios podem apresentar espículas semelhantes, tornando a classificação mais difícil, o problema ainda é agravado devido ao ruído de fundo e a variação das espículas de um mesmo neurônio. O algoritmo de spike sorting geralmente é dividido em três partes: inicialmente as espículas são detectadas, em seguida são projetadas em um espaço de características (podendo haver redução de dimensionalidade) para facilitar a diferenciação entre as formas de onda de diferentes neurônios, por fim é feito o agrupamento dessas características identificando assim as espículas pertencentes ao mesmo neurônio. Aqui propomos a utilização de ICA na etapa de extração de características das espículas, sendo esta etapa crítica para o processo de spike sorting, permitindo assim distinguir a atividade de cada neurônio detectado, auxiliando a análise da atividade da população neural próxima ao eletrodo. O método foi comparado com técnicas convencionais como Análise de componentes principais (PCA, do inglês Principal Component Analysis) e Wavelets, demonstrando significativa melhora nos resultados.Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-09-04T15:04:55Z No. of bitstreams: 1 Marcos Vinicius Lopes.pdf: 7214975 bytes, checksum: 3d8e5de44c75de5f02b3f6101759f37a (MD5)Made available in DSpace on 2017-09-04T15:04:55Z (GMT). No. of bitstreams: 1 Marcos Vinicius Lopes.pdf: 7214975 bytes, checksum: 3d8e5de44c75de5f02b3f6101759f37a (MD5) Previous issue date: 2013-02-27CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETSpike sorting; Extração de características; ICASpike sorting; Feature extraction; ICAMetodologia e Técnicas da Computação.Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting.Features extraction Using Independent component analysis for Spike Sorting.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMarcos Vinicius Lopes.pdfMarcos Vinicius Lopes.pdfapplication/pdf7214975http://tedebc.ufma.br:8080/bitstream/tede/1894/2/Marcos+Vinicius+Lopes.pdf3d8e5de44c75de5f02b3f6101759f37aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1894/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/18942017-12-07 13:57:40.23oai:tede2:tede/1894IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312017-12-07T16:57:40Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| dc.title.alternative.eng.fl_str_mv |
Features extraction Using Independent component analysis for Spike Sorting. |
| title |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| spellingShingle |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. LOPES, Marcus Vinicius de Sousa Spike sorting; Extração de características; ICA Spike sorting; Feature extraction; ICA Metodologia e Técnicas da Computação. |
| title_short |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| title_full |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| title_fullStr |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| title_full_unstemmed |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| title_sort |
Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting. |
| author |
LOPES, Marcus Vinicius de Sousa |
| author_facet |
LOPES, Marcus Vinicius de Sousa |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
| dc.contributor.advisor1ID.fl_str_mv |
34022589353 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
| dc.contributor.advisor2Lattes.fl_str_mv |
http://lattes.cnpq.br/0660692009750374 |
| dc.contributor.advisor-co1.fl_str_mv |
SANTANA, Ewaldo Eder Carvalho |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/0660692009750374 |
| dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
| dc.contributor.referee2.fl_str_mv |
SANTANA, Ewaldo Eder Carvalho |
| dc.contributor.referee3.fl_str_mv |
ARAÚJO, Dráulio Barros de |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7818012155694188 |
| dc.contributor.referee4.fl_str_mv |
FONSECA NETO, João Viana da |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/0029055473709795 |
| dc.contributor.authorID.fl_str_mv |
672.172.493-68 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8923592573399769 |
| dc.contributor.author.fl_str_mv |
LOPES, Marcus Vinicius de Sousa |
| contributor_str_mv |
BARROS FILHO, Allan Kardec Duailibe SANTANA, Ewaldo Eder Carvalho BARROS FILHO, Allan Kardec Duailibe SANTANA, Ewaldo Eder Carvalho ARAÚJO, Dráulio Barros de FONSECA NETO, João Viana da |
| dc.subject.por.fl_str_mv |
Spike sorting; Extração de características; ICA |
| topic |
Spike sorting; Extração de características; ICA Spike sorting; Feature extraction; ICA Metodologia e Técnicas da Computação. |
| dc.subject.eng.fl_str_mv |
Spike sorting; Feature extraction; ICA |
| dc.subject.cnpq.fl_str_mv |
Metodologia e Técnicas da Computação. |
| description |
Independent component analysis (ICA) is a method which objective is to find a non gaussian, linear or non linear representation such that the components are statistically independent. As a representation, tries to capture the input data essential structure. One of ICA applications is feature extraction. A main digital signal processing issue is finding a satisfactory representation, whether for image, speech signal or any signal type for purposes such as compression and de-noise. ICA can be aplied in this direction to propose generative models of the phenomena to be represented. This work presents the problem of spike classification in extracellular records, denominated spike sorting. It is assumed that the waveforms of spikes depend on factors such as the morphology of the neuron and the distance from the electrode, so that different neurons will present different forms of spikes. However, since different neurons may have similar spikes, what makes classification very difficult, the problem is even worse due to background noise and variation os spikes of the same neuron. The spike sorting algorithm is usually divided into three parts: firstly, the spikes are detected, then projected into a feature space (with possible dimensionality reduction) to facilitate differentiation between the waveforms from different neurons, finally the cluster algorithm is run for identifying these characteristics so the spikes from the same neuron. Here, we propose the use of ICA in feature extraction stage, being this step critical to the spike sorting process, thus distinguishing the activity of each neuron detected, supporting the analysis of neural population activity near the electrode. The method was compared with conventional techniques such as Principal Component Analysis and Wavelets, demonstrating a significant improvement in results. |
| publishDate |
2013 |
| dc.date.issued.fl_str_mv |
2013-02-27 |
| dc.date.accessioned.fl_str_mv |
2017-09-04T15:04:55Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LOPES, Marcus Vinicius de Sousa. Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting.. 2013. [80 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luís] . |
| dc.identifier.uri.fl_str_mv |
http://tedebc.ufma.br:8080/jspui/handle/tede/1894 |
| identifier_str_mv |
LOPES, Marcus Vinicius de Sousa. Extração de Características Utilizando Análise de Componentes Independentes para Spike Sorting.. 2013. [80 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luís] . |
| url |
http://tedebc.ufma.br:8080/jspui/handle/tede/1894 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/1894/2/Marcos+Vinicius+Lopes.pdf http://tedebc.ufma.br:8080/bitstream/tede/1894/1/license.txt |
| bitstream.checksum.fl_str_mv |
3d8e5de44c75de5f02b3f6101759f37a 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
| _version_ |
1853507993426984960 |