DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: NUNES, André Pereira lattes
Orientador(a): SILVA, Aristófanes Corrêa lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1845
Resumo: Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average.
id UFMA_d6c8d3110a9efa63eaaf7de494be008a
oai_identifier_str oai:tede2:tede/1845
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling SILVA, Aristófanes Corrêa288.745.363-72http://lattes.cnpq.br/2446301582459104PAIVA, Anselmo Cardoso de375.523.843-87http://lattes.cnpq.br/6446831084215512847.386.693-20http://lattes.cnpq.br/3983969534322369NUNES, André Pereira2017-08-21T14:59:23Z2009-02-20NUNES, André Pereira. DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [84 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .http://tedebc.ufma.br:8080/jspui/handle/tede/1845Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average.O câncer de mama é uma das maiores causas de mortalidade entre as mulheres no mundo todo. Atualmente, a análise da radiografia da mama é o recurso mais utilizado na detecção precoce desse tipo de câncer, pois possibilita a identificação de anomalias em sua fase inicial, fator fundamental para o sucesso do tratamento. A sensibilidade desse tipo de exame, no entanto, depende de diversos fatores, tais como tamanho e localização das anomalias, densidade do tecido mamário, qualidade dos recursos técnicos e habilidade do radiologista. Este trabalho apresenta uma metodologia para detecção de massas em imagens digitais de mamografias que poderá auxiliar o especialista em sua análise. O método proposto utiliza o algoritmo de agrupamento K-Means e a técnica de Template Matching para segmentar as regiões suspeitas de conterem massas. Em seguida, medidas de geometria e textura são extraídas de cada uma dessas regiões, sendo a textura descrita através do Índice de Diversidade de Simpson, uma estatística usada na Ecologia para mensurar a biodiversidade de um ecossistema. Finalmente, essas informações são submetidas a uma Máquina de Vetores de Suporte para que as regiões suspeitas sejam classificadas em massas ou não massas. A metodologia foi testada com 650 imagens mamográficas obtidas da base de dados DDSM, atingindo 83,94% de acurácia, 83,24% de sensibilidade, e 84,14% de especificidade em média.Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-21T14:59:23Z No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5)Made available in DSpace on 2017-08-21T14:59:23Z (GMT). No. of bitstreams: 1 Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) Previous issue date: 2009-02-20application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETMamografia; Detecção Auxiliada por Computador; K-Means; Template Matching; Índice de Diversidade de Simpson; Máquina de Vetores de SuporteMammography; Computer-Aided Detection; K-Means; Template Matching; Simpson’s Diversity Index; Support Vector MachineModelos Analíticos e de SimulaçãoDETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALAndre Pereira.pdfAndre Pereira.pdfapplication/pdf3105574http://tedebc.ufma.br:8080/bitstream/tede/1845/2/Andre+Pereira.pdf06e2fe68d48179a3c62a46e447b82513MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1845/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/18452018-01-24 16:21:55.689oai:tede2:tede/1845IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-01-24T19:21:55Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
dc.title.alternative.eng.fl_str_mv Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.
title DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
spellingShingle DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
NUNES, André Pereira
Mamografia; Detecção Auxiliada por Computador; K-Means; Template Matching; Índice de Diversidade de Simpson; Máquina de Vetores de Suporte
Mammography; Computer-Aided Detection; K-Means; Template Matching; Simpson’s Diversity Index; Support Vector Machine
Modelos Analíticos e de Simulação
title_short DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
title_full DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
title_fullStr DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
title_full_unstemmed DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
title_sort DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
author NUNES, André Pereira
author_facet NUNES, André Pereira
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Aristófanes Corrêa
dc.contributor.advisor1ID.fl_str_mv 288.745.363-72
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2446301582459104
dc.contributor.advisor-co1.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.advisor-co1ID.fl_str_mv 375.523.843-87
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.authorID.fl_str_mv 847.386.693-20
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3983969534322369
dc.contributor.author.fl_str_mv NUNES, André Pereira
contributor_str_mv SILVA, Aristófanes Corrêa
PAIVA, Anselmo Cardoso de
dc.subject.por.fl_str_mv Mamografia; Detecção Auxiliada por Computador; K-Means; Template Matching; Índice de Diversidade de Simpson; Máquina de Vetores de Suporte
topic Mamografia; Detecção Auxiliada por Computador; K-Means; Template Matching; Índice de Diversidade de Simpson; Máquina de Vetores de Suporte
Mammography; Computer-Aided Detection; K-Means; Template Matching; Simpson’s Diversity Index; Support Vector Machine
Modelos Analíticos e de Simulação
dc.subject.eng.fl_str_mv Mammography; Computer-Aided Detection; K-Means; Template Matching; Simpson’s Diversity Index; Support Vector Machine
dc.subject.cnpq.fl_str_mv Modelos Analíticos e de Simulação
description Breast cancer is one of the major causes of mortality among women throughout the world. Presently, the analysis of breast radiography is the most used method to early detection of this kind of cancer. It enables the identification of anomalies at their initial stage, which is a fundamental factor for success in the treatment. The sensitivity of this kind of exam, although, depends on several factors, such as the size and the location of the abnormalities, density of the breast tissue, quality of the technical resources and radiologist's ability. This work presents a methodology that uses the K-Means clustering algorithm and the Template Matching technique for segmentation of suspicious regions. Next, geometry and texture features are extracted from each of these regions, being the texture described by the Simpson's Diversity Index, a statistic used in Ecology to measure the biodiversity of an ecosystem. Finally, this information is submitted to a Support Vector Machine so that the suspicious regions are classified into masses and non-masses. The methodology was tested with 650 mammographic images from the DDSM database, achieving 83.94% of accuracy, 83.24% of sensibility and 84.14% of specificity in average.
publishDate 2009
dc.date.issued.fl_str_mv 2009-02-20
dc.date.accessioned.fl_str_mv 2017-08-21T14:59:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NUNES, André Pereira. DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [84 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
dc.identifier.uri.fl_str_mv http://tedebc.ufma.br:8080/jspui/handle/tede/1845
identifier_str_mv NUNES, André Pereira. DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [84 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .
url http://tedebc.ufma.br:8080/jspui/handle/tede/1845
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/1845/2/Andre+Pereira.pdf
http://tedebc.ufma.br:8080/bitstream/tede/1845/1/license.txt
bitstream.checksum.fl_str_mv 06e2fe68d48179a3c62a46e447b82513
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1853507992475926528