CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.
| Ano de defesa: | 2009 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | , |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
| Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tedebc.ufma.br:8080/jspui/handle/tede/1841 |
Resumo: | The diagnosis of lung nodules has been constantly looked for by researchers as a way to minimize the high global mortality indices related to lung cancer. The usage of medical images, such as Computerized Tomography, has made possible the deepening and the improvement of techniques used to evaluate exams and provide diagnosis. This work presents a methodology for diagnosing single lung nodules that can be an aid for studies performed on similar areas and for specialists. This methodology was applied to two different image databases. The representation of the nodules was done with extraction of geometry and texture features, being the last one described through Simpson’s Index, a statistic used in Spatial Analysis and in Ecology. These features were submitted to the Support Vector Machine classifier (SVM) in two approaches: the traditional approach and the approach by using One Class. With the traditional SVM approach, we have obtained sensibility rates of 90%, specificity of 96.67% and accuracy of 95%. Using One Class SVM, the obtained rates were: sensibility of 89.7%, specificity of 89.7% and accuracy of 89.7%. |
| id |
UFMA_ffaa333d2c5a4ff0986b2ce10da45185 |
|---|---|
| oai_identifier_str |
oai:tede2:tede/1841 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
SILVA, Aristófanes Corrêa288.745.363-72http://lattes.cnpq.br/2446301582459104PAIVA, Anselmo Cardoso de375.523.843-87http://lattes.cnpq.br/6446831084215512660.767.903-00http://lattes.cnpq.br/6291330891002015SILVA, Cleriston Araújo da2017-08-18T14:02:37Z2009-02-12SILVA, Cleriston Araújo da. CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [140 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .http://tedebc.ufma.br:8080/jspui/handle/tede/1841The diagnosis of lung nodules has been constantly looked for by researchers as a way to minimize the high global mortality indices related to lung cancer. The usage of medical images, such as Computerized Tomography, has made possible the deepening and the improvement of techniques used to evaluate exams and provide diagnosis. This work presents a methodology for diagnosing single lung nodules that can be an aid for studies performed on similar areas and for specialists. This methodology was applied to two different image databases. The representation of the nodules was done with extraction of geometry and texture features, being the last one described through Simpson’s Index, a statistic used in Spatial Analysis and in Ecology. These features were submitted to the Support Vector Machine classifier (SVM) in two approaches: the traditional approach and the approach by using One Class. With the traditional SVM approach, we have obtained sensibility rates of 90%, specificity of 96.67% and accuracy of 95%. Using One Class SVM, the obtained rates were: sensibility of 89.7%, specificity of 89.7% and accuracy of 89.7%.O diagnóstico de nódulos pulmonares tem sido buscado constantemente por pesquisadores como forma de amenizar os altos índices de mortalidade mundial relacionado ao câncer de pulmão. O uso de imagens médicas, como a Tomografia Computadorizada, tem possibilitado um aprofundamento e melhoramento de técnicas para avaliar exames e prover diagnósticos. Este trabalho apresenta uma metodologia para diagnóstico de nódulos pulmonares solitários que possa servir como um auxílio para estudos realizados em áreas afins e para especialistas. Esta metodologia foi aplicada a duas diferentes bases de dados de imagens. A representação dos nódulos foi feita com a extração de medidas de geometria e de textura sendo esta última descrita através do Índice de Simpson, uma estatística utilizada na Análise Espacial e na Ecologia. Essas medidas foram submetidas ao classificador Máquina de Vetores de Suporte - MVS em duas abordagens: a abordagem tradicional e abordagem usando uma classe. Com abordagem MVS tradicional, obtiveramse taxas de sensibilidade de 90%, especificidade de 96,67% e acurácia de 95%. Usando MVS de uma classe, as taxas obtidas foram: sensibilidade igual a 89,7%, especificidade igual a 89,7% e acurácia igual a 89,7%.Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-18T14:02:37Z No. of bitstreams: 1 cleriston.pdf: 1605933 bytes, checksum: c1faa5f854c1a9debfbaa1affc5ab4ad (MD5)Made available in DSpace on 2017-08-18T14:02:37Z (GMT). No. of bitstreams: 1 cleriston.pdf: 1605933 bytes, checksum: c1faa5f854c1a9debfbaa1affc5ab4ad (MD5) Previous issue date: 2009-02-12application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETImagens Médicas; Diagnóstico de Nódulo Pulmonar; Índice de Simpson; Máquina de Vetores de Suporte; Tomografia ComputadorizadaMedical images; Lung nodule diagnosis; Simpson’s Index; Support Vector Machine; Computerized TomographyModelos Analíticos e de SimulaçãoCARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.CHARACTERIZATION OF SOLID PULMONARY NODULES USING SIMPSON INDEX AND VECTOR MACHINE SUPPORT.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALcleriston.pdfcleriston.pdfapplication/pdf1605933http://tedebc.ufma.br:8080/bitstream/tede/1841/2/cleriston.pdfc1faa5f854c1a9debfbaa1affc5ab4adMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1841/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/18412017-12-07 13:56:29.866oai:tede2:tede/1841IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312017-12-07T16:56:29Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| dc.title.alternative.eng.fl_str_mv |
CHARACTERIZATION OF SOLID PULMONARY NODULES USING SIMPSON INDEX AND VECTOR MACHINE SUPPORT. |
| title |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| spellingShingle |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. SILVA, Cleriston Araújo da Imagens Médicas; Diagnóstico de Nódulo Pulmonar; Índice de Simpson; Máquina de Vetores de Suporte; Tomografia Computadorizada Medical images; Lung nodule diagnosis; Simpson’s Index; Support Vector Machine; Computerized Tomography Modelos Analíticos e de Simulação |
| title_short |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| title_full |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| title_fullStr |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| title_full_unstemmed |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| title_sort |
CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. |
| author |
SILVA, Cleriston Araújo da |
| author_facet |
SILVA, Cleriston Araújo da |
| author_role |
author |
| dc.contributor.advisor2ID.por.fl_str_mv |
375.523.843-87 |
| dc.contributor.advisor1.fl_str_mv |
SILVA, Aristófanes Corrêa |
| dc.contributor.advisor1ID.fl_str_mv |
288.745.363-72 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2446301582459104 |
| dc.contributor.advisor2.fl_str_mv |
PAIVA, Anselmo Cardoso de |
| dc.contributor.advisor2Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
| dc.contributor.authorID.fl_str_mv |
660.767.903-00 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6291330891002015 |
| dc.contributor.author.fl_str_mv |
SILVA, Cleriston Araújo da |
| contributor_str_mv |
SILVA, Aristófanes Corrêa PAIVA, Anselmo Cardoso de |
| dc.subject.por.fl_str_mv |
Imagens Médicas; Diagnóstico de Nódulo Pulmonar; Índice de Simpson; Máquina de Vetores de Suporte; Tomografia Computadorizada |
| topic |
Imagens Médicas; Diagnóstico de Nódulo Pulmonar; Índice de Simpson; Máquina de Vetores de Suporte; Tomografia Computadorizada Medical images; Lung nodule diagnosis; Simpson’s Index; Support Vector Machine; Computerized Tomography Modelos Analíticos e de Simulação |
| dc.subject.eng.fl_str_mv |
Medical images; Lung nodule diagnosis; Simpson’s Index; Support Vector Machine; Computerized Tomography |
| dc.subject.cnpq.fl_str_mv |
Modelos Analíticos e de Simulação |
| description |
The diagnosis of lung nodules has been constantly looked for by researchers as a way to minimize the high global mortality indices related to lung cancer. The usage of medical images, such as Computerized Tomography, has made possible the deepening and the improvement of techniques used to evaluate exams and provide diagnosis. This work presents a methodology for diagnosing single lung nodules that can be an aid for studies performed on similar areas and for specialists. This methodology was applied to two different image databases. The representation of the nodules was done with extraction of geometry and texture features, being the last one described through Simpson’s Index, a statistic used in Spatial Analysis and in Ecology. These features were submitted to the Support Vector Machine classifier (SVM) in two approaches: the traditional approach and the approach by using One Class. With the traditional SVM approach, we have obtained sensibility rates of 90%, specificity of 96.67% and accuracy of 95%. Using One Class SVM, the obtained rates were: sensibility of 89.7%, specificity of 89.7% and accuracy of 89.7%. |
| publishDate |
2009 |
| dc.date.issued.fl_str_mv |
2009-02-12 |
| dc.date.accessioned.fl_str_mv |
2017-08-18T14:02:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SILVA, Cleriston Araújo da. CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [140 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] . |
| dc.identifier.uri.fl_str_mv |
http://tedebc.ufma.br:8080/jspui/handle/tede/1841 |
| identifier_str_mv |
SILVA, Cleriston Araújo da. CARACTERIZAÇÃO DE NÓDULOS PULMONARES SOLITÁRIOS UTILIZANDO ÍNDICE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE.. 2009. [140 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] . |
| url |
http://tedebc.ufma.br:8080/jspui/handle/tede/1841 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/1841/2/cleriston.pdf http://tedebc.ufma.br:8080/bitstream/tede/1841/1/license.txt |
| bitstream.checksum.fl_str_mv |
c1faa5f854c1a9debfbaa1affc5ab4ad 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
| _version_ |
1853507992451809280 |