Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Wilian Soares Lacerda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/BUOS-8CTFF8
Resumo: This work aims at the implementation of classifying binary patterns with digital circuits in order to get a embedded system with the following features: portability, on-line training, operating in real time and with capacity of generalization. The proposed method makes use of training data filtering (or selection) before digital circuit synthesis. It is proposed an algorithm for minimum selection of samples that is based on the k Nearest Neighbor Rule (kNN). This results on a reduced complexity design phase, less resources of storage and processing, and yields also a degree of generalization capacity of the resulting circuit. Some examples of designs of digital classifier circuits generated from synthetic data and real data are presented. The results are compared with others techniques such as Artificial Neural Networks and Support Vector Machines, showing the effectiveness of the proposed method. With the proposed design method, the generated circuit classifier works with less logic gates and with higher generalization capacity than some of the other methods. An implementation in hardware of the method of generation of the proposed circuit classifier is also presented. A solution based on the reconfigurable hardware in FPGA Field Programmable Gate Array with multiprocessing based on the NIOS II processor was adopted. Some measures of performance of the system implemented in hardware are presented, showing the viability of the implementation. Finally, this work has the main contributions: has proposed a new method for sample selection based on kNN; has pressented two new metrics of distance between patterns; has presented a scheme for a digital combinational circuit design working as a binary pattern classifier with generalization capacity; and has presented a proposal for the implementation of a digital classifier system in hardware/software.
id UFMG_18e8dc8fb89397fa51d8dd76da4e000c
oai_identifier_str oai:repositorio.ufmg.br:1843/BUOS-8CTFF8
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificadaEngenharia elétricaEletrônica digitalEngenharia ElétricaThis work aims at the implementation of classifying binary patterns with digital circuits in order to get a embedded system with the following features: portability, on-line training, operating in real time and with capacity of generalization. The proposed method makes use of training data filtering (or selection) before digital circuit synthesis. It is proposed an algorithm for minimum selection of samples that is based on the k Nearest Neighbor Rule (kNN). This results on a reduced complexity design phase, less resources of storage and processing, and yields also a degree of generalization capacity of the resulting circuit. Some examples of designs of digital classifier circuits generated from synthetic data and real data are presented. The results are compared with others techniques such as Artificial Neural Networks and Support Vector Machines, showing the effectiveness of the proposed method. With the proposed design method, the generated circuit classifier works with less logic gates and with higher generalization capacity than some of the other methods. An implementation in hardware of the method of generation of the proposed circuit classifier is also presented. A solution based on the reconfigurable hardware in FPGA Field Programmable Gate Array with multiprocessing based on the NIOS II processor was adopted. Some measures of performance of the system implemented in hardware are presented, showing the viability of the implementation. Finally, this work has the main contributions: has proposed a new method for sample selection based on kNN; has pressented two new metrics of distance between patterns; has presented a scheme for a digital combinational circuit design working as a binary pattern classifier with generalization capacity; and has presented a proposal for the implementation of a digital classifier system in hardware/software.Universidade Federal de Minas Gerais2019-08-12T03:17:24Z2025-09-08T23:23:41Z2019-08-12T03:17:24Z2006-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/BUOS-8CTFF8Wilian Soares Lacerdainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:23:41Zoai:repositorio.ufmg.br:1843/BUOS-8CTFF8Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:23:41Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
title Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
spellingShingle Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
Wilian Soares Lacerda
Engenharia elétrica
Eletrônica digital
Engenharia Elétrica
title_short Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
title_full Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
title_fullStr Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
title_full_unstemmed Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
title_sort Projeto e implementação de circuitos classificadores digitais com controle da generalização baseado na regra do vizinho-mais-próximo modificada
author Wilian Soares Lacerda
author_facet Wilian Soares Lacerda
author_role author
dc.contributor.author.fl_str_mv Wilian Soares Lacerda
dc.subject.por.fl_str_mv Engenharia elétrica
Eletrônica digital
Engenharia Elétrica
topic Engenharia elétrica
Eletrônica digital
Engenharia Elétrica
description This work aims at the implementation of classifying binary patterns with digital circuits in order to get a embedded system with the following features: portability, on-line training, operating in real time and with capacity of generalization. The proposed method makes use of training data filtering (or selection) before digital circuit synthesis. It is proposed an algorithm for minimum selection of samples that is based on the k Nearest Neighbor Rule (kNN). This results on a reduced complexity design phase, less resources of storage and processing, and yields also a degree of generalization capacity of the resulting circuit. Some examples of designs of digital classifier circuits generated from synthetic data and real data are presented. The results are compared with others techniques such as Artificial Neural Networks and Support Vector Machines, showing the effectiveness of the proposed method. With the proposed design method, the generated circuit classifier works with less logic gates and with higher generalization capacity than some of the other methods. An implementation in hardware of the method of generation of the proposed circuit classifier is also presented. A solution based on the reconfigurable hardware in FPGA Field Programmable Gate Array with multiprocessing based on the NIOS II processor was adopted. Some measures of performance of the system implemented in hardware are presented, showing the viability of the implementation. Finally, this work has the main contributions: has proposed a new method for sample selection based on kNN; has pressented two new metrics of distance between patterns; has presented a scheme for a digital combinational circuit design working as a binary pattern classifier with generalization capacity; and has presented a proposal for the implementation of a digital classifier system in hardware/software.
publishDate 2006
dc.date.none.fl_str_mv 2006-02-22
2019-08-12T03:17:24Z
2019-08-12T03:17:24Z
2025-09-08T23:23:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/BUOS-8CTFF8
url https://hdl.handle.net/1843/BUOS-8CTFF8
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414078625382400