Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Vinícius Rezende Carvalho lattes
Orientador(a): Eduardo Mazoni Andrade Marçal Mendes lattes
Banca de defesa: Antonio Carlos Roque da Silva Filho, Jean Faber Ferreira de Abreu, Vinícius Rosa Cota, Leonardo Antônio Borges Tôrres
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
País: Brasil
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/40181
https://orcid.org/0000-0003-1821-1634
Resumo: Recurrent and spontaneous seizures are the hallmark of epilepsy, a neurological disease that affects around 1% of the world population and has higher incidence in developing countries. In general, seizure (or ictal) events are relatively easily identified due to their hypersynchronous and hyperexcitable nature, but the underlying neuronal mechanisms that give rise to such events are still unclear. One of the main ways of elucidating this involves the extraction of relevant features from electroencephalographic signals that are related to abnormal neuronal functioning. One promising strategy to highlight such features is the use of active probing paradigms. That is, the use of probing stimuli that would reveal information from a dynamical system, that would be otherwise inaccessible (or difficult to detect) through passive observation. This work evaluates the use of such probing strategies in two different contexts. In the first part of this thesis, a modified version of a well-known neural mass model is used to test how low-frequency probing stimuli enhance the detection of approaching seizures. We show that, as parameters are shifted to bring the model towards seizure activity, features extracted from the simulated activity reflect these changes when probing stimuli are used. Furthermore, the changes revealed by the stimuli appear to reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. Incorporating this strategy into early-warning systems may ultimately enable closing the loop for targeted seizure-controlling interventions. In the second part of the work, an auditory task was used to evaluate sound processing in epilepsy patients undergoing presurgical monitoring with depth electrode implants. It was hypothesized that regions involved in the onset of seizures would display abnormal auditory steady-state responses (ASSR) to amplitude-modulated sounds. This could be in the form of abnormal hypersynchronous responses in regions not usually involved in primary auditory processing, or in impaired responses due to central auditory dysfunctions caused by epileptogenic circuits. Results show that ASSRs were rarely elicited in electrode contacts within seizure onset zones (SOZ), contradicting the first hypothesis. Accurately evaluating the second hypothesis (of impaired ASSRs within SOZ) was not possible due to the highly heterogeneous nature of the data and implant schemes from all participants. This work showed the potential of low-frequency probing stimuli to highlight features and reveal underlying dynamics involved in the transition from interictal to ictal activity. However, the use of ASSRs for accurately identifying putative epileptogenic regions was limited. These responses are still promising for other diagnostics, such as identifying lateralization or seizure susceptibility, as may other types of stimuli be useful for identifying epileptogenic regions. Computational and experimental models will be crucial for defining the best strategies and parameters of active probing approaches for the identification of abnormal and epileptic activity.
id UFMG_20155125a99321d717606de9e2cd6b79
oai_identifier_str oai:repositorio.ufmg.br:1843/40181
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Eduardo Mazoni Andrade Marçal Mendeshttp://lattes.cnpq.br/9946199988598626Márcio Flávio Dutra MoraesAntonio Carlos Roque da Silva FilhoJean Faber Ferreira de AbreuVinícius Rosa CotaLeonardo Antônio Borges Tôrreshttp://lattes.cnpq.br/9654508909649514Vinícius Rezende Carvalho2022-03-17T14:17:06Z2022-03-17T14:17:06Z2021-09-16http://hdl.handle.net/1843/40181https://orcid.org/0000-0003-1821-1634Recurrent and spontaneous seizures are the hallmark of epilepsy, a neurological disease that affects around 1% of the world population and has higher incidence in developing countries. In general, seizure (or ictal) events are relatively easily identified due to their hypersynchronous and hyperexcitable nature, but the underlying neuronal mechanisms that give rise to such events are still unclear. One of the main ways of elucidating this involves the extraction of relevant features from electroencephalographic signals that are related to abnormal neuronal functioning. One promising strategy to highlight such features is the use of active probing paradigms. That is, the use of probing stimuli that would reveal information from a dynamical system, that would be otherwise inaccessible (or difficult to detect) through passive observation. This work evaluates the use of such probing strategies in two different contexts. In the first part of this thesis, a modified version of a well-known neural mass model is used to test how low-frequency probing stimuli enhance the detection of approaching seizures. We show that, as parameters are shifted to bring the model towards seizure activity, features extracted from the simulated activity reflect these changes when probing stimuli are used. Furthermore, the changes revealed by the stimuli appear to reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. Incorporating this strategy into early-warning systems may ultimately enable closing the loop for targeted seizure-controlling interventions. In the second part of the work, an auditory task was used to evaluate sound processing in epilepsy patients undergoing presurgical monitoring with depth electrode implants. It was hypothesized that regions involved in the onset of seizures would display abnormal auditory steady-state responses (ASSR) to amplitude-modulated sounds. This could be in the form of abnormal hypersynchronous responses in regions not usually involved in primary auditory processing, or in impaired responses due to central auditory dysfunctions caused by epileptogenic circuits. Results show that ASSRs were rarely elicited in electrode contacts within seizure onset zones (SOZ), contradicting the first hypothesis. Accurately evaluating the second hypothesis (of impaired ASSRs within SOZ) was not possible due to the highly heterogeneous nature of the data and implant schemes from all participants. This work showed the potential of low-frequency probing stimuli to highlight features and reveal underlying dynamics involved in the transition from interictal to ictal activity. However, the use of ASSRs for accurately identifying putative epileptogenic regions was limited. These responses are still promising for other diagnostics, such as identifying lateralization or seizure susceptibility, as may other types of stimuli be useful for identifying epileptogenic regions. Computational and experimental models will be crucial for defining the best strategies and parameters of active probing approaches for the identification of abnormal and epileptic activity.Crises espontâneas recorrentes são a marca registrada da epilepsia, uma doença neurológica que afeta cerca de 1% da população mundial e tem maior incidência em países em desenvolvimento. Em geral, os eventos de crise (ou ictais) são identificados com relativa facilidade devido à sua natureza hipersíncrona e hiperexcitável. Porém, os mecanismos neuronais subjacentes que dão origem a tais eventos não são totalmente esclarecidos. Uma das principais formas de elucidar isso envolve a extração de atributos relevantes de sinais eletroencefalográficos que estão relacionados ao funcionamento neuronal anormal. Uma estratégia promissora para ressaltar e auxiliar na identificação desses atributos é o uso de paradigmas de sondagem ativa. Ou seja, estímulos de sondagem revelariam informações de sistemas neurais, que seriam inacessíveis (ou difíceis de detectar) por meio da observação passiva. Este trabalho avalia o uso de tais estratégias de sondagem em dois contextos diferentes. Na primeira parte desta tese, uma versão modificada de um conhecido modelo de massa neural é usada para testar como estímulos de sondagem de baixa frequência auxiliam na identificação de estados com alta suscetibilidade a crises. Mostramos que, conforme os parâmetros são alterados para trazer o modelo para a atividade ictal, os atributos extraídos da atividade neural simulada refletem essas mudanças quando os estímulos de sondagem são usados. Além disso, as mudanças reveladas pelos estímulos refletem o fenômeno de desaceleração crítica, no qual há um aumento nos tempos de recuperação a perturbações. Isso sinalizaria a perda de resiliência de um sistema e é uma marca comum de uma transição crítica iminente. A incorporação do método aqui avaliado em sistemas de previsão de crises poderia permitir o fechamento da malha de um sistema de intervenções para controle de crises. Na segunda parte do trabalho, uma tarefa auditiva foi utilizada para avaliar o processamento auditivo em pacientes com epilepsia submetidos à monitorização invasiva pré-cirúrgica, com registros de estereoeletroencefalografia (SEEG). Partimos da hipótese que as regiões envolvidas no início das crises exibiriam potenciais evocados auditivos em regime permanente (PEARP, ou ASSR) anormais a sons modulados em amplitude (AM). Ou seja, circuitos epileptogêncicos influenciariam a resposta oscilatória induzida por sons AM. Esse efeito poderia ser (i) na forma de respostas hipersíncronas anormais em regiões que geralmente não estão envolvidas no processamento deste tipo de estímulo, ou (ii) em respostas comprometidas caso os circuitos epileptogênicos prejudicassem o processamento auditivo central. Os resultados mostram que os PEARPs raramente foram observados em contatos dos eletrodos nas zonas de início das crises, contradizendo a primeira hipótese. Avaliar com precisão a segunda hipótese (de diminuição de PEARPs dentro de circuitos epileptogênicos) não foi possível devido à natureza altamente heterogênea dos dados e da grande variabilidade nos esquemas de implantes de todos os pacientes. Este trabalho mostrou o potencial dos estímulos de sondagem de baixa frequência para ressaltar atributos eletrográficos e revelar dinâmicas envolvidas na transição da atividade neural de estados interictais para ictais. No entanto, o uso de PEARPs para identificar com precisão as regiões epileptogênicas foi limitado. Esses tipos de respostas auditivas ainda são promissores para outros diagnósticos, como a identificação de lateralização ou susceptibilidade a crises, assim como outros tipos de estímulos podem ser úteis para identificar regiões epileptogênicas. Modelos computacionais e experimentais serão cruciais para definir as melhores estratégias e parâmetros de abordagens de sondagem ativa para a identificação de atividade anormal e epiléptica.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia ElétricaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICAhttp://creativecommons.org/licenses/by-sa/3.0/pt/info:eu-repo/semantics/openAccessEngenharia elétricaEpilepsiaPredição (Logica)Neurociência computacionalEpilepsyActive probingCritical slowing downComputational neuroscienceSeizure predictionSEEGUsing computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsyUsando modelos computacionais e dados clínicos de eletrodos cerebrais profundos para avaliar paradigmas de sondagem ativa em epilepsiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTeseViniciusCarvalhoFINAL.pdfTeseViniciusCarvalhoFINAL.pdfTese de doutoradoapplication/pdf7771118https://repositorio.ufmg.br/bitstream/1843/40181/4/TeseViniciusCarvalhoFINAL.pdf1489ebeded8dd169890486292ad3646eMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.ufmg.br/bitstream/1843/40181/5/license_rdf5dda753f5b57b1020a56e348e443aa73MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/40181/6/license.txtcda590c95a0b51b4d15f60c9642ca272MD561843/401812022-03-17 11:17:06.71oai:repositorio.ufmg.br:1843/40181TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-03-17T14:17:06Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
dc.title.alternative.pt_BR.fl_str_mv Usando modelos computacionais e dados clínicos de eletrodos cerebrais profundos para avaliar paradigmas de sondagem ativa em epilepsia
title Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
spellingShingle Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
Vinícius Rezende Carvalho
Epilepsy
Active probing
Critical slowing down
Computational neuroscience
Seizure prediction
SEEG
Engenharia elétrica
Epilepsia
Predição (Logica)
Neurociência computacional
title_short Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
title_full Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
title_fullStr Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
title_full_unstemmed Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
title_sort Using computational models and clinical data from depth electrode implants to evaluate active probing paradigms in epilepsy
author Vinícius Rezende Carvalho
author_facet Vinícius Rezende Carvalho
author_role author
dc.contributor.advisor1.fl_str_mv Eduardo Mazoni Andrade Marçal Mendes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9946199988598626
dc.contributor.advisor-co1.fl_str_mv Márcio Flávio Dutra Moraes
dc.contributor.referee1.fl_str_mv Antonio Carlos Roque da Silva Filho
dc.contributor.referee2.fl_str_mv Jean Faber Ferreira de Abreu
dc.contributor.referee3.fl_str_mv Vinícius Rosa Cota
dc.contributor.referee4.fl_str_mv Leonardo Antônio Borges Tôrres
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9654508909649514
dc.contributor.author.fl_str_mv Vinícius Rezende Carvalho
contributor_str_mv Eduardo Mazoni Andrade Marçal Mendes
Márcio Flávio Dutra Moraes
Antonio Carlos Roque da Silva Filho
Jean Faber Ferreira de Abreu
Vinícius Rosa Cota
Leonardo Antônio Borges Tôrres
dc.subject.por.fl_str_mv Epilepsy
Active probing
Critical slowing down
Computational neuroscience
Seizure prediction
SEEG
topic Epilepsy
Active probing
Critical slowing down
Computational neuroscience
Seizure prediction
SEEG
Engenharia elétrica
Epilepsia
Predição (Logica)
Neurociência computacional
dc.subject.other.pt_BR.fl_str_mv Engenharia elétrica
Epilepsia
Predição (Logica)
Neurociência computacional
description Recurrent and spontaneous seizures are the hallmark of epilepsy, a neurological disease that affects around 1% of the world population and has higher incidence in developing countries. In general, seizure (or ictal) events are relatively easily identified due to their hypersynchronous and hyperexcitable nature, but the underlying neuronal mechanisms that give rise to such events are still unclear. One of the main ways of elucidating this involves the extraction of relevant features from electroencephalographic signals that are related to abnormal neuronal functioning. One promising strategy to highlight such features is the use of active probing paradigms. That is, the use of probing stimuli that would reveal information from a dynamical system, that would be otherwise inaccessible (or difficult to detect) through passive observation. This work evaluates the use of such probing strategies in two different contexts. In the first part of this thesis, a modified version of a well-known neural mass model is used to test how low-frequency probing stimuli enhance the detection of approaching seizures. We show that, as parameters are shifted to bring the model towards seizure activity, features extracted from the simulated activity reflect these changes when probing stimuli are used. Furthermore, the changes revealed by the stimuli appear to reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. Incorporating this strategy into early-warning systems may ultimately enable closing the loop for targeted seizure-controlling interventions. In the second part of the work, an auditory task was used to evaluate sound processing in epilepsy patients undergoing presurgical monitoring with depth electrode implants. It was hypothesized that regions involved in the onset of seizures would display abnormal auditory steady-state responses (ASSR) to amplitude-modulated sounds. This could be in the form of abnormal hypersynchronous responses in regions not usually involved in primary auditory processing, or in impaired responses due to central auditory dysfunctions caused by epileptogenic circuits. Results show that ASSRs were rarely elicited in electrode contacts within seizure onset zones (SOZ), contradicting the first hypothesis. Accurately evaluating the second hypothesis (of impaired ASSRs within SOZ) was not possible due to the highly heterogeneous nature of the data and implant schemes from all participants. This work showed the potential of low-frequency probing stimuli to highlight features and reveal underlying dynamics involved in the transition from interictal to ictal activity. However, the use of ASSRs for accurately identifying putative epileptogenic regions was limited. These responses are still promising for other diagnostics, such as identifying lateralization or seizure susceptibility, as may other types of stimuli be useful for identifying epileptogenic regions. Computational and experimental models will be crucial for defining the best strategies and parameters of active probing approaches for the identification of abnormal and epileptic activity.
publishDate 2021
dc.date.issued.fl_str_mv 2021-09-16
dc.date.accessioned.fl_str_mv 2022-03-17T14:17:06Z
dc.date.available.fl_str_mv 2022-03-17T14:17:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/40181
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0003-1821-1634
url http://hdl.handle.net/1843/40181
https://orcid.org/0000-0003-1821-1634
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-sa/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/40181/4/TeseViniciusCarvalhoFINAL.pdf
https://repositorio.ufmg.br/bitstream/1843/40181/5/license_rdf
https://repositorio.ufmg.br/bitstream/1843/40181/6/license.txt
bitstream.checksum.fl_str_mv 1489ebeded8dd169890486292ad3646e
5dda753f5b57b1020a56e348e443aa73
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1793890895632793600