Exportação concluída — 

Strategies for reducing the size of the search space in semantic genetic programming

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Luis Fernando Miranda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-B5UMN3
Resumo: Genetic programming (GP) uses bio-inspired operations to find adequate solutions to a diverse range of problems, including symbolic regression. Recent works introduced semantic awareness into these operations, enhancing the search. In particular, Geometric Semantic GP (GSGP)-the method taken as reference in this context-exploits geometric properties describing the relationship between possible solutions in an n-dimensional semantic space, where n is the number of training instances. However, in problems where n is high-a common scenario in real applications-the search can become excessively complicated. We tackle this problem by reducing the dimensionality of the semantic space through instance selection (IS) methods. We present two distinct strategies: the first is implemented as a pre-processing step while the second incorporates IS to the search. Our results showed that IS methods can improve the search performed by GSGP, resulting in a faster search for models with smaller errors.
id UFMG_2b1c853fdd98f24d660148a3e9adb171
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-B5UMN3
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Strategies for reducing the size of the search space in semantic genetic programmingProgramação Genética ( Computação)ComputaçãoSupervised LearningInstance SelectionGeometric Semantic Genetic ProgrammingSymbolic RegressionGenetic programming (GP) uses bio-inspired operations to find adequate solutions to a diverse range of problems, including symbolic regression. Recent works introduced semantic awareness into these operations, enhancing the search. In particular, Geometric Semantic GP (GSGP)-the method taken as reference in this context-exploits geometric properties describing the relationship between possible solutions in an n-dimensional semantic space, where n is the number of training instances. However, in problems where n is high-a common scenario in real applications-the search can become excessively complicated. We tackle this problem by reducing the dimensionality of the semantic space through instance selection (IS) methods. We present two distinct strategies: the first is implemented as a pre-processing step while the second incorporates IS to the search. Our results showed that IS methods can improve the search performed by GSGP, resulting in a faster search for models with smaller errors.Universidade Federal de Minas Gerais2019-08-10T09:44:00Z2025-09-08T22:58:03Z2019-08-10T09:44:00Z2018-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B5UMN3Luis Fernando Mirandainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:58:03Zoai:repositorio.ufmg.br:1843/ESBF-B5UMN3Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:58:03Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Strategies for reducing the size of the search space in semantic genetic programming
title Strategies for reducing the size of the search space in semantic genetic programming
spellingShingle Strategies for reducing the size of the search space in semantic genetic programming
Luis Fernando Miranda
Programação Genética ( Computação)
Computação
Supervised Learning
Instance Selection
Geometric Semantic Genetic Programming
Symbolic Regression
title_short Strategies for reducing the size of the search space in semantic genetic programming
title_full Strategies for reducing the size of the search space in semantic genetic programming
title_fullStr Strategies for reducing the size of the search space in semantic genetic programming
title_full_unstemmed Strategies for reducing the size of the search space in semantic genetic programming
title_sort Strategies for reducing the size of the search space in semantic genetic programming
author Luis Fernando Miranda
author_facet Luis Fernando Miranda
author_role author
dc.contributor.author.fl_str_mv Luis Fernando Miranda
dc.subject.por.fl_str_mv Programação Genética ( Computação)
Computação
Supervised Learning
Instance Selection
Geometric Semantic Genetic Programming
Symbolic Regression
topic Programação Genética ( Computação)
Computação
Supervised Learning
Instance Selection
Geometric Semantic Genetic Programming
Symbolic Regression
description Genetic programming (GP) uses bio-inspired operations to find adequate solutions to a diverse range of problems, including symbolic regression. Recent works introduced semantic awareness into these operations, enhancing the search. In particular, Geometric Semantic GP (GSGP)-the method taken as reference in this context-exploits geometric properties describing the relationship between possible solutions in an n-dimensional semantic space, where n is the number of training instances. However, in problems where n is high-a common scenario in real applications-the search can become excessively complicated. We tackle this problem by reducing the dimensionality of the semantic space through instance selection (IS) methods. We present two distinct strategies: the first is implemented as a pre-processing step while the second incorporates IS to the search. Our results showed that IS methods can improve the search performed by GSGP, resulting in a faster search for models with smaller errors.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-12
2019-08-10T09:44:00Z
2019-08-10T09:44:00Z
2025-09-08T22:58:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-B5UMN3
url https://hdl.handle.net/1843/ESBF-B5UMN3
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414070982311936