Improving search in geometric semantic genetic programming

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Luiz Otavio Vilas Boas Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-AFWG3P
Resumo: Making Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operators
id UFMG_fb591ce25dc4da49ca58f18b86edaa12
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-AFWG3P
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Improving search in geometric semantic genetic programmingProgramação genética (Computação)ComputaçãoOperadores semânticos geométricosOperadores de dispersãoseleção de instânciasProgramação genética semânticaMaking Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operatorsUniversidade Federal de Minas Gerais2019-08-11T12:11:34Z2025-09-09T00:29:40Z2019-08-11T12:11:34Z2016-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-AFWG3PLuiz Otavio Vilas Boas Oliveirainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T18:49:17Zoai:repositorio.ufmg.br:1843/ESBF-AFWG3PRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T18:49:17Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Improving search in geometric semantic genetic programming
title Improving search in geometric semantic genetic programming
spellingShingle Improving search in geometric semantic genetic programming
Luiz Otavio Vilas Boas Oliveira
Programação genética (Computação)
Computação
Operadores semânticos geométricos
Operadores de dispersão
seleção de instâncias
Programação genética semântica
title_short Improving search in geometric semantic genetic programming
title_full Improving search in geometric semantic genetic programming
title_fullStr Improving search in geometric semantic genetic programming
title_full_unstemmed Improving search in geometric semantic genetic programming
title_sort Improving search in geometric semantic genetic programming
author Luiz Otavio Vilas Boas Oliveira
author_facet Luiz Otavio Vilas Boas Oliveira
author_role author
dc.contributor.author.fl_str_mv Luiz Otavio Vilas Boas Oliveira
dc.subject.por.fl_str_mv Programação genética (Computação)
Computação
Operadores semânticos geométricos
Operadores de dispersão
seleção de instâncias
Programação genética semântica
topic Programação genética (Computação)
Computação
Operadores semânticos geométricos
Operadores de dispersão
seleção de instâncias
Programação genética semântica
description Making Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operators
publishDate 2016
dc.date.none.fl_str_mv 2016-09-28
2019-08-11T12:11:34Z
2019-08-11T12:11:34Z
2025-09-09T00:29:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-AFWG3P
url https://hdl.handle.net/1843/ESBF-AFWG3P
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413917291479040