Improving search in geometric semantic genetic programming
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ESBF-AFWG3P |
Resumo: | Making Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operators |
| id |
UFMG_fb591ce25dc4da49ca58f18b86edaa12 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESBF-AFWG3P |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Improving search in geometric semantic genetic programmingProgramação genética (Computação)ComputaçãoOperadores semânticos geométricosOperadores de dispersãoseleção de instânciasProgramação genética semânticaMaking Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operatorsUniversidade Federal de Minas Gerais2019-08-11T12:11:34Z2025-09-09T00:29:40Z2019-08-11T12:11:34Z2016-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-AFWG3PLuiz Otavio Vilas Boas Oliveirainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T18:49:17Zoai:repositorio.ufmg.br:1843/ESBF-AFWG3PRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T18:49:17Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Improving search in geometric semantic genetic programming |
| title |
Improving search in geometric semantic genetic programming |
| spellingShingle |
Improving search in geometric semantic genetic programming Luiz Otavio Vilas Boas Oliveira Programação genética (Computação) Computação Operadores semânticos geométricos Operadores de dispersão seleção de instâncias Programação genética semântica |
| title_short |
Improving search in geometric semantic genetic programming |
| title_full |
Improving search in geometric semantic genetic programming |
| title_fullStr |
Improving search in geometric semantic genetic programming |
| title_full_unstemmed |
Improving search in geometric semantic genetic programming |
| title_sort |
Improving search in geometric semantic genetic programming |
| author |
Luiz Otavio Vilas Boas Oliveira |
| author_facet |
Luiz Otavio Vilas Boas Oliveira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Luiz Otavio Vilas Boas Oliveira |
| dc.subject.por.fl_str_mv |
Programação genética (Computação) Computação Operadores semânticos geométricos Operadores de dispersão seleção de instâncias Programação genética semântica |
| topic |
Programação genética (Computação) Computação Operadores semânticos geométricos Operadores de dispersão seleção de instâncias Programação genética semântica |
| description |
Making Genetic Programming methods semantic-aware has been the focus of many works in the past years. Among these methods, Geometric Semantic GP (GSGP) acts on the syntax of the parent programs producing offspring respecting a semantic criterion. In this thesis we focus on the open issues of GSGP. We investigate the impact of the geometric semantic crossover with different distance functions and the possibility of optimally adjusting its coefficients. We also present the Sequential Symbolic Regression, an attempt to control the exponential growth of the individuals caused by the use of this operator. In addition, we propose a Geometric Dispersion framework to construct operators that move individuals to less dense areas of the search space. Last, we present a study of the impact of selecting training instances in order to reduce the semantic space dimensionality. All methods proposed showed GSGP search can be improved by adding simple and effective mechanisms to its current operators |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-09-28 2019-08-11T12:11:34Z 2019-08-11T12:11:34Z 2025-09-09T00:29:40Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ESBF-AFWG3P |
| url |
https://hdl.handle.net/1843/ESBF-AFWG3P |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413917291479040 |