Curvas elípticas sobre corpos finitos
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/62124 |
Resumo: | Much has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields. |
| id |
UFMG_3a5ade446b7996035e7c35e3a7a43d0a |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/62124 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Curvas elípticas sobre corpos finitosMatemática – TesesCurvas elípticas – TesesCurvas algébricas –TesesCorpos finitos (Álgebra) –TesesGeometria algébricaCriptografiaÁlgebraCorpos FinitosMuch has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2023-12-21T18:51:15Z2025-09-09T01:26:20Z2023-12-21T18:51:15Z2020-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/62124porJosé Gustavo Coelhoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T01:26:20Zoai:repositorio.ufmg.br:1843/62124Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T01:26:20Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Curvas elípticas sobre corpos finitos |
| title |
Curvas elípticas sobre corpos finitos |
| spellingShingle |
Curvas elípticas sobre corpos finitos José Gustavo Coelho Matemática – Teses Curvas elípticas – Teses Curvas algébricas –Teses Corpos finitos (Álgebra) –Teses Geometria algébrica Criptografia Álgebra Corpos Finitos |
| title_short |
Curvas elípticas sobre corpos finitos |
| title_full |
Curvas elípticas sobre corpos finitos |
| title_fullStr |
Curvas elípticas sobre corpos finitos |
| title_full_unstemmed |
Curvas elípticas sobre corpos finitos |
| title_sort |
Curvas elípticas sobre corpos finitos |
| author |
José Gustavo Coelho |
| author_facet |
José Gustavo Coelho |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
José Gustavo Coelho |
| dc.subject.por.fl_str_mv |
Matemática – Teses Curvas elípticas – Teses Curvas algébricas –Teses Corpos finitos (Álgebra) –Teses Geometria algébrica Criptografia Álgebra Corpos Finitos |
| topic |
Matemática – Teses Curvas elípticas – Teses Curvas algébricas –Teses Corpos finitos (Álgebra) –Teses Geometria algébrica Criptografia Álgebra Corpos Finitos |
| description |
Much has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-03-09 2023-12-21T18:51:15Z 2023-12-21T18:51:15Z 2025-09-09T01:26:20Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/62124 |
| url |
https://hdl.handle.net/1843/62124 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414107572371456 |