Curvas elípticas sobre corpos finitos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: José Gustavo Coelho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/62124
Resumo: Much has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields.
id UFMG_3a5ade446b7996035e7c35e3a7a43d0a
oai_identifier_str oai:repositorio.ufmg.br:1843/62124
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Curvas elípticas sobre corpos finitosMatemática – TesesCurvas elípticas – TesesCurvas algébricas –TesesCorpos finitos (Álgebra) –TesesGeometria algébricaCriptografiaÁlgebraCorpos FinitosMuch has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2023-12-21T18:51:15Z2025-09-09T01:26:20Z2023-12-21T18:51:15Z2020-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/62124porJosé Gustavo Coelhoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T01:26:20Zoai:repositorio.ufmg.br:1843/62124Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T01:26:20Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Curvas elípticas sobre corpos finitos
title Curvas elípticas sobre corpos finitos
spellingShingle Curvas elípticas sobre corpos finitos
José Gustavo Coelho
Matemática – Teses
Curvas elípticas – Teses
Curvas algébricas –Teses
Corpos finitos (Álgebra) –Teses
Geometria algébrica
Criptografia
Álgebra
Corpos Finitos
title_short Curvas elípticas sobre corpos finitos
title_full Curvas elípticas sobre corpos finitos
title_fullStr Curvas elípticas sobre corpos finitos
title_full_unstemmed Curvas elípticas sobre corpos finitos
title_sort Curvas elípticas sobre corpos finitos
author José Gustavo Coelho
author_facet José Gustavo Coelho
author_role author
dc.contributor.author.fl_str_mv José Gustavo Coelho
dc.subject.por.fl_str_mv Matemática – Teses
Curvas elípticas – Teses
Curvas algébricas –Teses
Corpos finitos (Álgebra) –Teses
Geometria algébrica
Criptografia
Álgebra
Corpos Finitos
topic Matemática – Teses
Curvas elípticas – Teses
Curvas algébricas –Teses
Corpos finitos (Álgebra) –Teses
Geometria algébrica
Criptografia
Álgebra
Corpos Finitos
description Much has been said about elliptic curves and their applications in cryptography. This text regards their algebraic aspects. We shall approach elliptic curves as plane projective curves possessing an operation that turns the set of its points into an abelian group. The first chapter deals with properly defining elliptic curves, their operations and concrete formulas for calculating in them. It is shown how to determine the Weierstrass form and results about the structure, like Nagell-Lutz’s and Mordell’s theorems are presented. The second chapter begins the work on elliptic curves over finite fields, with the purpose of briefly exposing how they are used in cryptography. The final chapter uses more sophisticated algebraic methods to display results about the existence and structure of the groups in elliptic curves over finite fields.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-09
2023-12-21T18:51:15Z
2023-12-21T18:51:15Z
2025-09-09T01:26:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/62124
url https://hdl.handle.net/1843/62124
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414107572371456