SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ESBF-B4KHRE |
Resumo: | Multi-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention. |
| id |
UFMG_49f0d7811fa9b4c44f7306d34d72a3e1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESBF-B4KHRE |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃORecuperação da informaçãoComputaçãoAprendizado do computadorVerificação de QualidadeAprendizado de MáquinaMultiVisãoRecuperação de informaçãoMulti-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention.Universidade Federal de Minas Gerais2019-08-13T01:07:58Z2025-09-08T23:14:29Z2019-08-13T01:07:58Z2018-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B4KHRELuiz Felipe Goncalves Magalhaesinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:14:29Zoai:repositorio.ufmg.br:1843/ESBF-B4KHRERepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:14:29Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| title |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| spellingShingle |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO Luiz Felipe Goncalves Magalhaes Recuperação da informação Computação Aprendizado do computador Verificação de Qualidade Aprendizado de Máquina MultiVisão Recuperação de informação |
| title_short |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| title_full |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| title_fullStr |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| title_full_unstemmed |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| title_sort |
SEPARAÇÃO AUTOMÁTICA DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO |
| author |
Luiz Felipe Goncalves Magalhaes |
| author_facet |
Luiz Felipe Goncalves Magalhaes |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Luiz Felipe Goncalves Magalhaes |
| dc.subject.por.fl_str_mv |
Recuperação da informação Computação Aprendizado do computador Verificação de Qualidade Aprendizado de Máquina MultiVisão Recuperação de informação |
| topic |
Recuperação da informação Computação Aprendizado do computador Verificação de Qualidade Aprendizado de Máquina MultiVisão Recuperação de informação |
| description |
Multi-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08-31 2019-08-13T01:07:58Z 2019-08-13T01:07:58Z 2025-09-08T23:14:29Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ESBF-B4KHRE |
| url |
https://hdl.handle.net/1843/ESBF-B4KHRE |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413937702010880 |