SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Luiz Felipe Goncalves Magalhaes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-B4KHRE
Resumo: Multi-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention.
id UFMG_49f0d7811fa9b4c44f7306d34d72a3e1
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-B4KHRE
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃORecuperação da informaçãoComputaçãoAprendizado do computadorVerificação de QualidadeAprendizado de MáquinaMultiVisãoRecuperação de informaçãoMulti-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention.Universidade Federal de Minas Gerais2019-08-13T01:07:58Z2025-09-08T23:14:29Z2019-08-13T01:07:58Z2018-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B4KHRELuiz Felipe Goncalves Magalhaesinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:14:29Zoai:repositorio.ufmg.br:1843/ESBF-B4KHRERepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:14:29Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
title SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
spellingShingle SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
Luiz Felipe Goncalves Magalhaes
Recuperação da informação
Computação
Aprendizado do computador
Verificação de Qualidade
Aprendizado de Máquina
MultiVisão
Recuperação de informação
title_short SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
title_full SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
title_fullStr SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
title_full_unstemmed SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
title_sort SEPARAÇÃO AUTOMÁTICA    DE ATRIBUTOS PARA MÉTODOS DE APRENDIZADO MULTI-VISÃO
author Luiz Felipe Goncalves Magalhaes
author_facet Luiz Felipe Goncalves Magalhaes
author_role author
dc.contributor.author.fl_str_mv Luiz Felipe Goncalves Magalhaes
dc.subject.por.fl_str_mv Recuperação da informação
Computação
Aprendizado do computador
Verificação de Qualidade
Aprendizado de Máquina
MultiVisão
Recuperação de informação
topic Recuperação da informação
Computação
Aprendizado do computador
Verificação de Qualidade
Aprendizado de Máquina
MultiVisão
Recuperação de informação
description Multi-view learning is a ``hot'' tendency in machine learning that has produced top-notch results in several applications areas. One of them is automated quality assessment of content created collaboratively on the Web, better exemplified by `Wikis'. Wikis are one of the most common information repositories, to which users resort when they have some information need. Given their free and collaborative nature, such repositories need to control content quality, in order to avoid containing wrong or incomplete information. The state-of-the-art solution for this problem relies on multi-view learning, where quality is considered a multifaceted concept that can be learned from human quality assessments. To this effect, features describing quality have to be devised and grouped into views based on criteria such as text structure, readability, style, user edit history, etc. The task of determining the views requires the assistance of an expert, which is hard to do in scenarios where views are overlapping or hard to interpret by humans. In addition, human engineered views may not be the most adequate for automatically solving the quality measurement problem. In this work, we propose an automatic view generator, to address the problem of generating views for MultiView learning, specially for the problem of automated quality assessment. We evaluate this approach on three popular Wiki datasets. In our experiments, our solution outperformed a version that exploits only the original features, with gains of up to $20$\% in terms of accuracy of the quality assessment. Our method was also able to automatically produce views that are competitive or even better than those manually created, for the task of quality assessment, without any human intervention.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-31
2019-08-13T01:07:58Z
2019-08-13T01:07:58Z
2025-09-08T23:14:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-B4KHRE
url https://hdl.handle.net/1843/ESBF-B4KHRE
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413937702010880