Proposta de uma abordagem para sumarização extrativa de textos científicos longos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Cinthia Mikaela de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/51324
Resumo: Automatic text summarization is one of the solutions that allows users to identify the most relevant information in a textual document, consequently reducing the time to search for information. The objective of this technique is to condense the information of a text into a simple and descriptive summary, which gives the reader a general idea of the text without having to read all its content. Most of the literature in automatic text summarization focuses on proposing and improving Deep Learning methods in order to make these models applicable in the context of long text summarization. Unfortunately, these models still have limitations on the input sequence length. Such a limitation may lead to a loss of information that impairs the quality of the summaries generated. For this reason, we propose in this dissertation a new approach to extractive summarization of long texts. We have two hypotheses, the first is that subdividing the summarization problem into smaller problems and solving them separately, and later combining these solutions can be beneficial for the task of summarizing long texts. The second hypothesis is that there are other characteristics of the text that can be useful in the creation of the summary. With this in mind, we model the text summarization problem as a binary classification problem. We tested different algorithms and showed that multi-section summarization outperforms single-section summarization with a performance gain of approximately 14% and 5% of BertScore for the Plos One and ArXiv datasets, respectively. We also evaluated the performance of the proposed summarizer using different representations of the text and showed that the single-view representation of attributes is the one that gets the best results. This shows that, for the extractive text summarization task, the attributes selected to compose the attributes view allow to better identify the importance of the sentences. Finally, we compare the proposed method with different state-of-the-art models in extractive, abstractive and hybrid summarization and show that our approach outperforms these models.
id UFMG_70640e93d43fbc2fcec5ffaedad4d6f9
oai_identifier_str oai:repositorio.ufmg.br:1843/51324
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Proposta de uma abordagem para sumarização extrativa de textos científicos longos. Computação – TesesSumarização automática de textos – TesesAprendizado de máquina multivisão– TesesClassificação – TesesSumariza ̧c ̃ao extrativa de textosAprendizado Multi-visãoClassificaçãoAutomatic text summarization is one of the solutions that allows users to identify the most relevant information in a textual document, consequently reducing the time to search for information. The objective of this technique is to condense the information of a text into a simple and descriptive summary, which gives the reader a general idea of the text without having to read all its content. Most of the literature in automatic text summarization focuses on proposing and improving Deep Learning methods in order to make these models applicable in the context of long text summarization. Unfortunately, these models still have limitations on the input sequence length. Such a limitation may lead to a loss of information that impairs the quality of the summaries generated. For this reason, we propose in this dissertation a new approach to extractive summarization of long texts. We have two hypotheses, the first is that subdividing the summarization problem into smaller problems and solving them separately, and later combining these solutions can be beneficial for the task of summarizing long texts. The second hypothesis is that there are other characteristics of the text that can be useful in the creation of the summary. With this in mind, we model the text summarization problem as a binary classification problem. We tested different algorithms and showed that multi-section summarization outperforms single-section summarization with a performance gain of approximately 14% and 5% of BertScore for the Plos One and ArXiv datasets, respectively. We also evaluated the performance of the proposed summarizer using different representations of the text and showed that the single-view representation of attributes is the one that gets the best results. This shows that, for the extractive text summarization task, the attributes selected to compose the attributes view allow to better identify the importance of the sentences. Finally, we compare the proposed method with different state-of-the-art models in extractive, abstractive and hybrid summarization and show that our approach outperforms these models.Universidade Federal de Minas Gerais2023-03-29T14:51:16Z2025-09-08T23:59:05Z2023-03-29T14:51:16Z2022-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/51324porCinthia Mikaela de Souzainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:59:05Zoai:repositorio.ufmg.br:1843/51324Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:59:05Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Proposta de uma abordagem para sumarização extrativa de textos científicos longos
title Proposta de uma abordagem para sumarização extrativa de textos científicos longos
spellingShingle Proposta de uma abordagem para sumarização extrativa de textos científicos longos
Cinthia Mikaela de Souza
. Computação – Teses
Sumarização automática de textos – Teses
Aprendizado de máquina multivisão– Teses
Classificação – Teses
Sumariza ̧c ̃ao extrativa de textos
Aprendizado Multi-visão
Classificação
title_short Proposta de uma abordagem para sumarização extrativa de textos científicos longos
title_full Proposta de uma abordagem para sumarização extrativa de textos científicos longos
title_fullStr Proposta de uma abordagem para sumarização extrativa de textos científicos longos
title_full_unstemmed Proposta de uma abordagem para sumarização extrativa de textos científicos longos
title_sort Proposta de uma abordagem para sumarização extrativa de textos científicos longos
author Cinthia Mikaela de Souza
author_facet Cinthia Mikaela de Souza
author_role author
dc.contributor.author.fl_str_mv Cinthia Mikaela de Souza
dc.subject.por.fl_str_mv . Computação – Teses
Sumarização automática de textos – Teses
Aprendizado de máquina multivisão– Teses
Classificação – Teses
Sumariza ̧c ̃ao extrativa de textos
Aprendizado Multi-visão
Classificação
topic . Computação – Teses
Sumarização automática de textos – Teses
Aprendizado de máquina multivisão– Teses
Classificação – Teses
Sumariza ̧c ̃ao extrativa de textos
Aprendizado Multi-visão
Classificação
description Automatic text summarization is one of the solutions that allows users to identify the most relevant information in a textual document, consequently reducing the time to search for information. The objective of this technique is to condense the information of a text into a simple and descriptive summary, which gives the reader a general idea of the text without having to read all its content. Most of the literature in automatic text summarization focuses on proposing and improving Deep Learning methods in order to make these models applicable in the context of long text summarization. Unfortunately, these models still have limitations on the input sequence length. Such a limitation may lead to a loss of information that impairs the quality of the summaries generated. For this reason, we propose in this dissertation a new approach to extractive summarization of long texts. We have two hypotheses, the first is that subdividing the summarization problem into smaller problems and solving them separately, and later combining these solutions can be beneficial for the task of summarizing long texts. The second hypothesis is that there are other characteristics of the text that can be useful in the creation of the summary. With this in mind, we model the text summarization problem as a binary classification problem. We tested different algorithms and showed that multi-section summarization outperforms single-section summarization with a performance gain of approximately 14% and 5% of BertScore for the Plos One and ArXiv datasets, respectively. We also evaluated the performance of the proposed summarizer using different representations of the text and showed that the single-view representation of attributes is the one that gets the best results. This shows that, for the extractive text summarization task, the attributes selected to compose the attributes view allow to better identify the importance of the sentences. Finally, we compare the proposed method with different state-of-the-art models in extractive, abstractive and hybrid summarization and show that our approach outperforms these models.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-05
2023-03-29T14:51:16Z
2023-03-29T14:51:16Z
2025-09-08T23:59:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/51324
url https://hdl.handle.net/1843/51324
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414054142181376