Image representation learning through genetic quantization
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/41682 |
Resumo: | Representações de imagens crucial importância crucial em sistemas de visão computa- cional pois codificam a informação intrínseca aos pixels e suas relações de uma maneira computacionalmente tratável, permitindo aos algoritmos aprender sobre o conteúdo visual das imagens e tomar decisões a partir disso. O aprendizado de representação de imagens visa fornecer um processo automatizado para a composição das repre- sentações otimizadas à uma dada tarefa de visão computacional. O estado-da-arte dessa área de pesquisa - que são as técnicas baseadas em Deep Learning - alcançou, nos últimos anos, grandes avanços na solução de problemas estudados há várias décadas pela comunidade de Inteligência Artificial e bateu recordes em diversas tarefas de reconhecimento de padrões. No entanto, essas técnicas geralmente apresentam alta complexidade computacional e demandam uma grande quantidade de recursos como memória de armazenamento, memória de trabalho, capacidade computacional e energia. Além disso, elas comumente requerem grandes conjuntos de dados rotulados a fim de produzir modelos eficazes. Motivados por essas desvantagens, combinamos três pilares para produzir representações com consumo eficiente de recursos: aprendizagem incremental, que otimiza representações sem construí-las do zero, evitando alta complexidade e grande consumo de recursos; algoritmos evolutivos, que fornecem uma otimização escalável, uma cobertura eficiente do espaço de busca e fácil adequação a problemas de otimização combinatória; e otimização de quantização, que é capaz de promover compactação sem reduzir o número de parâmetros. Nós abordamos duas classes essenciais do aprendizado de representações de imagens: representações shallow e deep. No estudo da primeira classe, propomos a otimização de representações shallow e introduzimos uma abordagem baseada em Algoritmo Genético que otimiza a quantização de cores de representações desenhadas manualmente para maior compactação e eficácia na tarefa executada. Avaliamos esta metodologia em tarefas de recuperação de imagens baseadas em conteúdo e obtivemos representações de tamanho menor com precisão significativamente melhor além de superar metodologias baseadas em Deep Learning. No estudo da segunda classe, estudamos a otimização de representações deep através de uma tarefa de compressão de redes neurais artificiais e propomos um método de quantização de precisão mista pós-treinamento para otimizar os pesos e ativações de modelos convolucionais usando uma busca baseada em Algoritmo Genético multi-objetivo. Avaliamos esta metodologia na tarefa de classificação de imagens us- ando o dataset Imagenet e obtivemos compressão com baixa perda de precisão através da quantização pós-treinamento. Os resultados sugerem que a otimização usando Algo- ritmo Genético é uma abordagem promissora para futuras metodologias apresentando um aprendizado de representações altamente eficaz e com consumo eficiente de recursos. |
| id |
UFMG_8d89e38c8b44c3a9499f1a4a0aeed4a1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/41682 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Image representation learning through genetic quantizationAprendizado de representações de imagens usando quantização genéticaComputação – TesesAprendizado de representação – TesesAlgoritmos evolucionários – TesesAlgoritmos genéticos – TesesRecuperação de imagens baseada em conteúdo– TesesRepresentation LearningFeature ExtractionEvolutionary AlgorithmGenetic AlgorithmContent-Based Image RetrievalImage ClassificationModel QuantizationColor QuantizationMixed-PrecisionPost-training QuantizationRepresentações de imagens crucial importância crucial em sistemas de visão computa- cional pois codificam a informação intrínseca aos pixels e suas relações de uma maneira computacionalmente tratável, permitindo aos algoritmos aprender sobre o conteúdo visual das imagens e tomar decisões a partir disso. O aprendizado de representação de imagens visa fornecer um processo automatizado para a composição das repre- sentações otimizadas à uma dada tarefa de visão computacional. O estado-da-arte dessa área de pesquisa - que são as técnicas baseadas em Deep Learning - alcançou, nos últimos anos, grandes avanços na solução de problemas estudados há várias décadas pela comunidade de Inteligência Artificial e bateu recordes em diversas tarefas de reconhecimento de padrões. No entanto, essas técnicas geralmente apresentam alta complexidade computacional e demandam uma grande quantidade de recursos como memória de armazenamento, memória de trabalho, capacidade computacional e energia. Além disso, elas comumente requerem grandes conjuntos de dados rotulados a fim de produzir modelos eficazes. Motivados por essas desvantagens, combinamos três pilares para produzir representações com consumo eficiente de recursos: aprendizagem incremental, que otimiza representações sem construí-las do zero, evitando alta complexidade e grande consumo de recursos; algoritmos evolutivos, que fornecem uma otimização escalável, uma cobertura eficiente do espaço de busca e fácil adequação a problemas de otimização combinatória; e otimização de quantização, que é capaz de promover compactação sem reduzir o número de parâmetros. Nós abordamos duas classes essenciais do aprendizado de representações de imagens: representações shallow e deep. No estudo da primeira classe, propomos a otimização de representações shallow e introduzimos uma abordagem baseada em Algoritmo Genético que otimiza a quantização de cores de representações desenhadas manualmente para maior compactação e eficácia na tarefa executada. Avaliamos esta metodologia em tarefas de recuperação de imagens baseadas em conteúdo e obtivemos representações de tamanho menor com precisão significativamente melhor além de superar metodologias baseadas em Deep Learning. No estudo da segunda classe, estudamos a otimização de representações deep através de uma tarefa de compressão de redes neurais artificiais e propomos um método de quantização de precisão mista pós-treinamento para otimizar os pesos e ativações de modelos convolucionais usando uma busca baseada em Algoritmo Genético multi-objetivo. Avaliamos esta metodologia na tarefa de classificação de imagens us- ando o dataset Imagenet e obtivemos compressão com baixa perda de precisão através da quantização pós-treinamento. Os resultados sugerem que a otimização usando Algo- ritmo Genético é uma abordagem promissora para futuras metodologias apresentando um aprendizado de representações altamente eficaz e com consumo eficiente de recursos.Universidade Federal de Minas Gerais2022-05-13T22:57:03Z2025-09-09T01:17:29Z2022-05-13T22:57:03Z2021-01-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/41682enghttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessÉrico Marco Dias Alves Pereirareponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T17:57:49Zoai:repositorio.ufmg.br:1843/41682Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T17:57:49Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Image representation learning through genetic quantization Aprendizado de representações de imagens usando quantização genética |
| title |
Image representation learning through genetic quantization |
| spellingShingle |
Image representation learning through genetic quantization Érico Marco Dias Alves Pereira Computação – Teses Aprendizado de representação – Teses Algoritmos evolucionários – Teses Algoritmos genéticos – Teses Recuperação de imagens baseada em conteúdo– Teses Representation Learning Feature Extraction Evolutionary Algorithm Genetic Algorithm Content-Based Image Retrieval Image Classification Model Quantization Color Quantization Mixed-Precision Post-training Quantization |
| title_short |
Image representation learning through genetic quantization |
| title_full |
Image representation learning through genetic quantization |
| title_fullStr |
Image representation learning through genetic quantization |
| title_full_unstemmed |
Image representation learning through genetic quantization |
| title_sort |
Image representation learning through genetic quantization |
| author |
Érico Marco Dias Alves Pereira |
| author_facet |
Érico Marco Dias Alves Pereira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Érico Marco Dias Alves Pereira |
| dc.subject.por.fl_str_mv |
Computação – Teses Aprendizado de representação – Teses Algoritmos evolucionários – Teses Algoritmos genéticos – Teses Recuperação de imagens baseada em conteúdo– Teses Representation Learning Feature Extraction Evolutionary Algorithm Genetic Algorithm Content-Based Image Retrieval Image Classification Model Quantization Color Quantization Mixed-Precision Post-training Quantization |
| topic |
Computação – Teses Aprendizado de representação – Teses Algoritmos evolucionários – Teses Algoritmos genéticos – Teses Recuperação de imagens baseada em conteúdo– Teses Representation Learning Feature Extraction Evolutionary Algorithm Genetic Algorithm Content-Based Image Retrieval Image Classification Model Quantization Color Quantization Mixed-Precision Post-training Quantization |
| description |
Representações de imagens crucial importância crucial em sistemas de visão computa- cional pois codificam a informação intrínseca aos pixels e suas relações de uma maneira computacionalmente tratável, permitindo aos algoritmos aprender sobre o conteúdo visual das imagens e tomar decisões a partir disso. O aprendizado de representação de imagens visa fornecer um processo automatizado para a composição das repre- sentações otimizadas à uma dada tarefa de visão computacional. O estado-da-arte dessa área de pesquisa - que são as técnicas baseadas em Deep Learning - alcançou, nos últimos anos, grandes avanços na solução de problemas estudados há várias décadas pela comunidade de Inteligência Artificial e bateu recordes em diversas tarefas de reconhecimento de padrões. No entanto, essas técnicas geralmente apresentam alta complexidade computacional e demandam uma grande quantidade de recursos como memória de armazenamento, memória de trabalho, capacidade computacional e energia. Além disso, elas comumente requerem grandes conjuntos de dados rotulados a fim de produzir modelos eficazes. Motivados por essas desvantagens, combinamos três pilares para produzir representações com consumo eficiente de recursos: aprendizagem incremental, que otimiza representações sem construí-las do zero, evitando alta complexidade e grande consumo de recursos; algoritmos evolutivos, que fornecem uma otimização escalável, uma cobertura eficiente do espaço de busca e fácil adequação a problemas de otimização combinatória; e otimização de quantização, que é capaz de promover compactação sem reduzir o número de parâmetros. Nós abordamos duas classes essenciais do aprendizado de representações de imagens: representações shallow e deep. No estudo da primeira classe, propomos a otimização de representações shallow e introduzimos uma abordagem baseada em Algoritmo Genético que otimiza a quantização de cores de representações desenhadas manualmente para maior compactação e eficácia na tarefa executada. Avaliamos esta metodologia em tarefas de recuperação de imagens baseadas em conteúdo e obtivemos representações de tamanho menor com precisão significativamente melhor além de superar metodologias baseadas em Deep Learning. No estudo da segunda classe, estudamos a otimização de representações deep através de uma tarefa de compressão de redes neurais artificiais e propomos um método de quantização de precisão mista pós-treinamento para otimizar os pesos e ativações de modelos convolucionais usando uma busca baseada em Algoritmo Genético multi-objetivo. Avaliamos esta metodologia na tarefa de classificação de imagens us- ando o dataset Imagenet e obtivemos compressão com baixa perda de precisão através da quantização pós-treinamento. Os resultados sugerem que a otimização usando Algo- ritmo Genético é uma abordagem promissora para futuras metodologias apresentando um aprendizado de representações altamente eficaz e com consumo eficiente de recursos. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-01-12 2022-05-13T22:57:03Z 2022-05-13T22:57:03Z 2025-09-09T01:17:29Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/41682 |
| url |
https://hdl.handle.net/1843/41682 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413887376654336 |